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Abstract
In the field of deep learning for medical image analysis, training models from scratch are often used and sometimes, transfer 
learning from pretrained parameters on ImageNet models is also adopted. However, there is no universally accepted medical 
image dataset specifically designed for pretraining models currently. The purpose of this study is to construct such a general 
dataset and validate its effectiveness on downstream medical imaging tasks, including classification and segmentation. In 
this work, we first build a medical image dataset by collecting several public medical image datasets (CPMID). And then, 
some pretrained models used for transfer learning are obtained based on CPMID. Various-complexity Resnet and the Vision 
Transformer network are used as the backbone architectures. In the tasks of classification and segmentation on three other 
datasets, we compared the experimental results of training from scratch, from the pretrained parameters on ImageNet, and 
from the pretrained parameters on CPMID. Accuracy, the area under the receiver operating characteristic curve, and class 
activation map are used as metrics for classification performance. Intersection over Union as the metric is for segmentation 
evaluation. Utilizing the pretrained parameters on the constructed dataset CPMID, we achieved the best classification accu-
racy, weighted accuracy, and ROC-AUC values on three validation datasets. Notably, the average classification accuracy 
outperformed ImageNet-based results by 4.30%, 8.86%, and 3.85% respectively. Furthermore, we achieved the optimal 
balanced outcome of performance and efficiency in both classification and segmentation tasks. The pretrained parameters 
on the proposed dataset CPMID are very effective for common tasks in medical image analysis such as classification and 
segmentation.
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Introduction

Transfer learning [1] is a deep learning method where a 
model trained for one task is used as the training start point 
for the model on another task. The pretrained model param-
eters from ImageNet [2] are usually used in various areas 
including medical images. The idea is that the pretrained 
models may have learned general features and representa-
tions from a large and diverse dataset, which can be benefi-
cial for other related tasks. Although transfer learning based 
on ImageNet is widely applied [3–6], there is a domain 

gap between ImageNet dataset and the target dataset. The 
evaluation on two large medical image datasets [7] showed 
that transfer learning offered little benefit to performance 
and simple models can perform comparably to standard 
ImageNet models. However, small-scale medical imaging 
datasets are more prevalent in both scientific research and 
general applications. These datasets often contain a limited 
number of annotated samples due to the inherent challenge 
in medical imaging of the specialized and costly annota-
tion. In such cases, transfer learning from pretrained models 
on large-scale datasets like ImageNet becomes a valuable 
approach [8], which helps to overcome the limitations of 
small-scale medical images and improves the performance 
of efficient analysis and diagnosis.

The work [9, 10] showed that models pretrained on gray-
scale ImageNet performed better in both speed and accuracy 
on X-ray image classification. An intuitive explanation could 
be that gray images have more similar features with medical 
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images. The study [11] provided an effective pretraining 
method by using 2D radiographs which can outperform Ima-
geNet pretraining. The work [12] proposed RadImageNet 
pretrained models to demonstrate better interpretability 
compared with ImageNet models especially for smaller 
radiologic datasets. These works all realized the difference 
between the pretraining domain and the target task domain 
and the importance of transfer learning based on pretrained 
models from medical images. However, there is still a lack of 
a universal medical imaging dataset for obtaining pretrained 
models that can be applied to small-scale medical imaging 
analysis tasks downstream. The research [13] presented that 
a large dataset is crucial for CNNs. By creating balanced 
sample spaces and using transfer learning, CNNs are better 
trained.

From the aspect of neural network structure, convolution 
neural networks (CNNs) have reigned for many years as the 
approach of medical image analysis. In recent years, Vision 
Transformers (ViTs) have become increasingly popular for 
image intelligent recognition [14, 15]. Transformers have 
outperformed CNNs on many vision tasks such as classifica-
tion [16] and semantic segmentation [17] due to the attention 
mechanism. CNNs or ViTs usually perform worse when the 
data is scarce, so employing transfer learning is the typical 
solution.

In this study, we first build a medical image dataset by 
collection of several public medical image datasets, called 
CPMID for short, covering X-ray, CT, and MRI modali-
ties. And then, we train the pretrained models on CPMID 
using Resnet [18] with different complexities and Vision 
Transformer. At last, we compared the experimental results 
on the other three publicly accessible small-scale medical 
image datasets by training from scratch, from the pretrained 
parameters on ImageNet, and from the pretrained parameters 
on CPMID. We also study the effects of different complexity 
neural network structures on transfer learning. Classification 
performance is measured on metrics such as model complex-
ity, classification accuracy, and class activation heatmaps 
[19], and segmentation performance is measured in terms 
of pixel intersection-over-union (IOU) [20] averaged across 
the four classes.

The main contributions are as follows:

1. 	 Based on several publicly medical image datasets, a 
medical domain dataset for pretraining and five pre-
trained models for transfer learning were constructed.

2.	  The effectiveness of these pretrained models from the 
proposed dataset was validated on classification and seg-
mentation tasks.

3.	  On downstream medical image analysis, the results of 
training initialization with from scratch, with pretrained 
parameters from ImageNet, and with pretrained param-
eters from CPMID were compared, demonstrating that 

transfer learning based on the proposed dataset is the 
most effective.

4. 	 The effectiveness of transfer learning was compared 
across network structures with different complexities, 
confirming that transfer learning based on pretrained 
models of the same domain with a simpler network 
structure yields the best results on smaller datasets.

These experiments and findings in this study provide 
some appropriate guidelines for using transfer learning on 
common medical image analysis. For better reproducibility 
of the experimental results, we will share the proposed data-
set for pretraining, the pretrained models, and the training 
configuration files soon.

Materials and Methods

The entire process of this study primarily consists of three 
main components: construction of the pretraining dataset 
CPMID, training the pretrained models, and the results com-
parison of with different training initialization on three other 
medical image datasets. The overall framework is illustrated 
in Fig. 1.

Construction of the Pretraining Dataset

We collected several larger public medical image datasets 
containing CheXpert dataset [21], Medical Segmentation 
Decathlon (MSD) dataset [22], and LIDC-IDRI dataset [23] 
to build the pretraining medical database CPMID. The fol-
lowing are how we get CPMID from these three open data-
sets. The CheXpert dataset contains 224,316 chest radio-
graphs of 65,240 patients. The X-ray images are provided 
with 14 labels (no finding, enlarged Cardiom, cardiomegaly, 
lung lesion, lung opacity, edema, consolidation, pneumonia, 
atelectasis, pneumothorax, pleural effusion, pleural other, 
fracture, support devices) derived the corresponding radiol-
ogy reports. These 14 categories of X-ray images serve as 
the primary components of CPMID.

This MSD dataset contains a total of 2633 three-dimen-
sional images collected across multiple anatomies of inter-
est, multiple modalities, and multiple sources. To facilitate 
the subsequent training task of classification, five organ cat-
egories (brain, heart, liver, lung, prostate) with a larger pro-
portion in the images were selected. We chose the key image 
frames of transverse section from 3d volume images accord-
ing to the segmentation mask. The selected five categories 
of CT/MR key images serve as an additional component of 
the CPMID database.

The dataset LIDC-IDRI contains lesion annotations 
from four experienced thoracic radiologists, which contains 
1018 low-dose lung CTs from 1010 lung patients. Due to 
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the relatively small proportion of the lung nodule lesions in 
the image, we cropped a region of 224*224 around the nod-
ule approximately as the saved image. The cropped nodule 
images are the last part of the CPMID database.

Finally, the built medical database CPMID consists of 
530,380 medical images from X-ray, CT, and MRI modali-
ties. The summary table describing for pretraining dataset 
is listed in Table 1, containing the label name, the number 
of images per class, the type of imaging, and the respec-
tive spatial resolution. Although smaller in size compared 
to ImageNet, it basically covers common medical imaging 
modalities, major organs, and lesions.

Pretrained Models on CPMID

As shown in Fig.  1, following the construction of the 
CPMID database, we trained the 20-category classifica-
tion model using several typical networks, respectively. For 
comparing the impact of network structures with differ-
ent complexities on transfer learning, Resnet18, Resnet34, 
Resnet50, Resnet101, and Vision Transformer networks are 
chosen. The classic vision network architectures ranging 
from simple to complex are covered. The training proce-
dure is implemented using MMClassification toolbox from 

the OpenMMLab [24] project based on PyTorch with two 
NVIDIA GeForce RTX 3090 GPU. For fair comparisons, we 
trained all models for 100 epochs with the consistent hyper-
parameters and model settings except the network structure 
itself. The batch size is 256, so there are 2000 iterations in 
one epoch. SGD optimizer is used with initial learning rate 
of 0.1, a weight decay of 0.0001, and momentum of 0.9.

The FLOPs and the size of params are usually used to 
demonstrate the complexity of a model. The two indicators 
of our used models for the input shape (3, 224, 224) are 
listed in Table 2. The numerical value in the fourth column 
represents the training time on CPMID for different network 
structures.

During the whole training process, we obtain a trained 
model at every epoch, along with the accuracy on the vali-
dation set. The curves in Fig. 2 show that the CNN series 
(Resnet18, Resnet34, Resnet50, Resnet101) consistently 
achieve high levels of accuracy, outperforming the used ViT 
model. We believe that it is ViT’s reliance on large size of 
data that has caused this result. We can see that within 100 
epochs, the training models have all reached convergence. 
The models with the best performance on the validation set 
will be used as the pretrained models respectively for the 
five different network structures in subsequent comparisons.

Fig. 1   The overall framework of 
this study. CPMID = collec-
tion of several public medical 
image datasets, CT = computed 
tomography, MRI = magnetic 
resonance imaging, ViT = 
Vision Transformer
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Validation Datasets

The public datasets ChestXRay2017 [25] and the tuberculo-
sis (TB) dataset [26] are used in the classification validation 
task. ChestXRay2017 consists of 5856 X-ray images with 
400–2000-pixel resolution. The images are divided into three 
categories: normal, bacterial pneumonia, and viral pneumo-
nia. The number of images in each category is 1583, 2780, 
and 1493, respectively. TB dataset consists of two publicly 
available smaller datasets, MontgomeryCXRSet and Chi-
naCXRSet, released by the National Library of Medicine 
[27]. In the TB dataset, the number of images in the normal 
and tuberculosis categories is respectively 406 and 394. As 
listed in Table 3, the training and validation sets are divided 
according to the partitioning of the ChestXRay2017 datasets 
itself in the multiclass classification. And the TB dataset is 

divided into a 9:1 ratio for training and validation in binary 
classification experiment.

To demonstrate the general applicability of our proposed 
method within the medical imaging domain, we introduced 
an additional validation dataset that is completely distinct 
from the images used for pretraining in the construction 
dataset. BreastMNIST [28] contains 780 breast ultrasound 
images, which simplify the task into binary classification by 
combining normal and benign as positive and classifying 
them against malignant as negative. The source images are 
resized into 224 × 224.

In the segmentation task, we used the dataset from 
CHAOS challenge [29], which aims to segment four abdom-
inal organs (liver, right kidney, left kidney, and spleen) from 
MRI data. Since the test set is not publicly available, we 
can only use the available training data for experimentation. 
The datasets are acquired by a 1.5 T Philips MRI, which 
produces 12-bit DICOM images having a resolution of 
256 × 256. The ISDs vary between 5.5 and 9 mm (average 
7.84 mm), x–y spacing is between 1.36 and 1.89 mm (aver-
age 1.61 mm), and the number of slices is between 26 and 
50 (average 36).

Comparison Module

In the comparison phase shown, we first train classifica-
tion and segmentation models for comparison, with each 
model being trained on five different network structures 

Table 1   The summary table for 
describing the training dataset 
in CPMID

Class labels Image number Image type Resolution

No finding 22,381 X-ray 390*320
Enlarged Cardiom 10,798 X-ray 390*320
Cardiomegaly 27,000 X-ray 390*320
Lung lesion 9186 X-ray [320,390]*[320,390]
Lung opacity 105,581 X-ray 390*320
Edema 52,246 X-ray 390*320
Consolidation 14,783 X-ray 390*320
Pneumonia 6039 X-ray [320,390]*[320,390]
Atelectasis 33,376 X-ray [320,390]*[320,390]
Pneumothorax 19,448 X-ray [320,390]*[320,390]
Pleural effusion 86,187 X-ray [320,390]*[320,390]
Pleural other 3523 X-ray [320,390]*[320,390]
Fracture 9040 X-ray [320,390]*[320,390]
Support devices 116,001 X-ray 390*320
Brain 4788 MRI 240*240
Heart 372 MRI 320*320
Liver 2143 CT 512*512
Lung 465 CT 512*512
Prostate 216 MRI 256*256
Nodules 4708 CT 224*224

Table 2   The FLOPs and parameter sizes of different networks

FLOPs floating point operations, CPMID collection of several public 
medical image datasets

Networks FLOPs Params Training time on CPMID

Resnet18 1.82G 11.18 M 6 h 25 m 34 s
Resnet34 3.68G 21.29 M 9 h 54 m 32 s
Resnet50 4.12G 23.51 M 17 h 1 m 40 s
Resnet101 7.85G 42.50 M 27 h 46 m 27 s
ViT-base 16.86G 85.80 M 41 h 5 m 48 s
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under three different initialization conditions, namely, 
training from scratch (random initialization), the pre-
trained parameters from ImageNet, and the pretrained 
parameters from CPMID. Then, the trained models are 
individually applied to the validation data to obtain their 
respective results.

To compare the performance impact of transfer learn-
ing on different models, the training and validation con-
ditions for the three methods are kept consistent, except 
for the difference in training starting points. For each net-
work associated with an initialization method, the trained 
model that performs best on the test set will be chosen for 
comparison experiments.

Results

We carried out a comprehensive set of experiments on exter-
nal downstream tasks to evaluate the performance of models 
that were trained from scratch, from pretrained parameters 
on ImageNet, or from pretrained parameters on CPMID. The 
comparison experiments contain three classification tasks 
and one segmentation task. As described in the method sec-
tion, we have trained 39 classification models and six seg-
mentation models totally for the external validation tasks.

Classification Results

In the three classification experiments, we applied various 
networks and different initialization starting points to train 
the models separately. There are five different networks: 
Resnet18, Resnet34, Resnet50, Resnet101, and ViT. The 
three different training initialization methods include Ran-
dom, pretrained parameters from ImageNet, and pretrained 
parameters from CPMID. There are a total of 39 classifica-
tion models and 39 corresponding test results for the three 
experiments totally. To facilitate comparison, each model 
was trained for 100 epochs without any special optimization. 
The first two classification experimental results are illus-
trated in Fig. 3. The horizontal axis in the figures represents 
the trained model associated with different epochs, and the 
vertical axis denotes the corresponding test accuracy. From 
these figures, it can be observed that neural networks with 

Fig. 2   The validation accuracy curves during the training process by using different networks. ViT Vision Transformer

Table 3   The training set and validation set of two datasets for multi-
class and binary classification

TB tuberculosis

Classification Types Training set Validation set

ChestXRay2017-
multiclass

Normal 1349 234
Bacterial pneumo-

nia
2538 242

Viral pneumonia 1345 148
TB-binary Normal 366 40

Tuberculosis 355 39
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simpler structures, such as Resnet18 and Resnet34, dem-
onstrate the optimal performance in the two classification 
experiments when the CPMID pretrained parameters are 
used. Furthermore, as the network architecture grows in 
complexity, the efficacy of the method utilizing ImageNet 
pretrained parameters progressively enhances. Nevertheless, 
it remains inferior to the optimal outcome achieved with 
CPMID, especially in balancing efficiency and accuracy.

The more detailed comparison of results can be found 
in Tables 4 and 5. We use the accuracy and class-weighted 
accuracy metrics to measure different methods. The best 
validation accuracy values during the 100 epochs with dif-
ferent networks and initialization strategies are listed. We 
can observe that the method employing CPMID pretrained 
parameters with Resnet34 yielded the best result of 0.9263 
and 0.9176 in the multiclassification task on ChestXRay2017 
and achieved the highest values of 0.9241 and 0.9234 in the 
binary classification task on the TB dataset using Resnet18. 
As listed in Table 6, the classification metrics of sensitiv-
ity, specificity, accuracy, and class-weighted accuracy are 
compared for the external ultrasound dataset. It can be seen 
that the validation results based on the pretraining dataset 
constructed in this study are the best, and there is a better 
balance between sensitivity and specificity. Generally, using 
a simpler network structure for initial training with CPMID 
pretrained parameters yields the best results, overall sur-
passing the initial training based on ImageNet pretrained 
parameters. Notably, the average accuracy based on CPMID 
outperformed ImageNet-based results by 4.30%, 8.86%, and 
3.85% on the three validation datasets respectively. There-
fore, for some medical image classification tasks of a simi-
lar scale to these three datasets in this study, it is recom-
mended to use transfer learning from the proposed CPMID 

pretrained parameters with a relatively simple network. 
Through this method, the model can be trained efficiently 
and achieve very good results. The training and validation 
are also implemented based on PyTorch with two NVIDIA 
GeForce RTX 3090 GPU.

To more intuitively compare the performance of various 
binary classifiers on the TB dataset, we have created the cor-
responding receiver operating characteristic (ROC) curves 
as shown in Fig. 4. The names in the legend are composed 
of the network architecture and the initialization conditions. 
We can see that the simpler network architectures such as 
Resnet18 and Resnet34, which underwent transfer learning 
based on CPMID constructed in this paper, achieved the 
best results. The top six methods in terms of performance 
are all based on transfer learning, and their results overall 
outperform those of other methods significantly.

Furthermore, we compared the effectiveness of transfer 
learning from the perspective of heatmap activations. The 
ground-truth positions of the TB lesions in the validation 
dataset were indicated by a radiology doctor. Figure 5 shows 
the visualizations of the gradient-weighted class activation 
maps (GradCAMs) [30] on two representative examples of 
tuberculosis images. The norm layer of the Resnet18-based 
model’s last block is used to get GradCAM. By aligning 
the location of the lesion with that of the original image, 
the heatmap generated by the proposed CPMID pretrained 
method exhibits higher accuracy and better focus compared 
to the other two methods.

Segmentation Results

For the segmentation experiments, the 20 cases of T1-weighted 
sequences were randomly divided into three parts for conduct-
ing threefold cross-validation in this experiment. Each case 
corresponds to a series of DICOM images belonging to a sin-
gle patient. The experiments were based on the DeeplabV3 
[31] network which uses Resnet as its backbone network and 
cross-entropy as the loss function to realize image semantic 
segmentation. In our research, ResNet-50 and ResNet-101 
were used as backbone networks, and model parameter 

Fig. 3   The classification performance comparison of three differ-
ent training initializations with the five different networks, Resnet18, 
Resnet34, Resnet50, Resnet101, and ViT, respectively. The curves 
a–e show the validation results of the models at different training 
epochs on the ChestXRay2017 dataset. The curves f–j show the val-
idation results of the models at different training epochs on the TB 
dataset. ViT Vision Transformer, CPMID collection of several public 
medical image datasets, TB tuberculosis

◂

Table 4   For ChestXRay2017, 
the comparison of classification 
accuracy, class-weighted 
accuracy, and F1 score 
with different networks and 
initialization strategies

ViT Vision Transformer
Values in bold indicate the highest values of the corresponding performance metrics

Networks Random initialization Pretrained parameters from 
ImageNet

Pretrained parameters 
from CPMID

Resnet18 0.8814, 0.8700, 0.8817 0.8077, 0.7982, 0.8069 0.9247, 0.9160, 0.9246
Resnet34 0.8750, 0.8621, 0.8755 0.8125, 0.8058, 0.8123 0.9263, 0.9176, 0.9263
Resnet50 0.8590, 0.8383, 0.8568 0.9022, 0.8794, 0.8999 0.9103, 0.8924, 0.9087
Resnet101 0.8590, 0.8364, 0.8566 0.8622, 0.8423, 0.8610 0.9103, 0.8949, 0.9097
ViT-base 0.7804, 0.7594, 0.7779 0.9167, 0.9110, 0.9172 0.8445, 0.8365, 0.8388
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Table 5   For TB dataset, the 
comparison of classification 
accuracy, class-weighted 
accuracy, and F1 score 
with different networks and 
initialization strategies

TB tuberculosis, CPMID collection of several public medical image datasets
Values in bold indicate the highest values of the corresponding performance metrics

Networks Random initialization Pretrained parameters from 
ImageNet

Pretrained parameters 
from CPMID

Resnet18 0.7215, 0.7205, 0.6944 0.6835, 0.6821, 0.6377 0.9241, 0.9234, 0.9189
Resnet34 0.7722, 0.7712, 0.7500 0.7595, 0.7577, 0.7164 0.9114, 0.9106, 0.9041
Resnet50 0.7595, 0.7580, 0.7246 0.8608, 0.8596, 0.8451 0.8354, 0.8353, 0.8312
Resnet101 0.7468, 0.7446, 0.6875 0.7468, 0.7455, 0.7143 0.8481, 0.8481, 0.8462
ViT-base 0.7848, 0.7824, 0.7302 0.7975, 0.7958, 0.7647 0.7722, 0.7702, 0.7273

Table 6   For the BreastMNIST ultrasound dataset, the comparison of sensitivity (Se), specificity (Sp), accuracy (Acc), class-weighted accuracy 
(WAcc) and F1 score with different networks and initialization strategies

Values in bold indicate the highest values of the corresponding performance metrics

Network metrics Random initialization Pretrained parameters from ImageNet Pretrained parameters from CPMID

Se Sp Acc WAcc F1 Se Sp Acc WAcc F1 Se Sp Acc WAcc F1

Resnet18 0.965 0.476 0.833 0.721 0.894 0.983 0.143 0.756 0.563 0.855 0.842 0.714 0.808 0.778 0.865
Resnet34 0.965 0.500 0.840 0.733 0.898 0.956 0.333 0.789 0.645 0.869 0.921 0.738 0.872 0.830 0.913
Resnet50 0.974 0.262 0.782 0.618 0.867 0.947 0.667 0.872 0.807 0.915 0.886 0.762 0.853 0.824 0.898

Fig. 4   The ROC curves of all the binary classifiers on the TB dataset. ViT Vision Transformer, CPMID collection of several public medical image datasets
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initialization was performed from scratch, ImageNet pretrained 
weights, and CPMID pretrained parameters respectively. The 
metrics for evaluations are Intersection over Union (IoU) for 
the four organs, including the liver, right kidney, left kidney, 
and spleen, and mean IoU (mIoU) which can comprehensively 
reflect the segmentation performance of the model on the four 
categories. All the results are listed in Table 7.

Firstly, the segmentation results based on pretrained 
parameters are all better than those with random initializa-
tion; secondly, the average result of two networks based on 
CPMID 0.8117 is slightly better than that based on ImageNet 
0.8104, but the difference is not significant. Segmentation is a 
more complex task than classification. Although CPMID has 
the advantage of a similar domain, ImageNet has the advan-
tage in terms of quantity. Therefore, the results of pretrained 
parameters based on the two datasets are not significantly 

different. Nevertheless, we can still observe that the mIoU 
values achieved by CPMID pretrained method with Resnet50 
are highly comparable with ImageNet pretrained method with 
Resnet101, despite the fact that the Resnet50 model has a 
much lower complexity than the Resnet101 model. Therefore, 
compared to pretrained models based on ImageNet, using a 
pretrained model based on CPMID can significantly reduce 
the time for training and inference while ensuring accuracy.

Discussion

ImageNet-pretrained models have been widely used in medi-
cal image analysis though there is an obvious domain gap 
between natural images and medical images. To the best of 
our knowledge, this is the first work to use multiple networks 

Fig. 5   Visualizations of the gradient-weighted class activation maps. 
a The two original X-ray images with dashed circles marking the 
approximate location of the TB lesion. b The GradCAMs based on 
random initialization method. c The GradCAMs based on ImageNet 

pretrained method. d The GradCAMs based on the proposed CPMID 
pretrained method. GradCAMs gradient-weighted class activation 
maps, CPMID collection of several public medical image datasets

Table 7   The segmentation 
IoU results of four abdominal 
organs and mIoU with different 
networks and initialization 
strategies

IoU Intersection over Union, mIoU mean Intersection over Union

Initialization Network Liver Right kidney Left kidney Spleen mIoU

Random initialization Resnet50 0.8902 0.7834 0.7518 0.7352 0.7902
Resnet101 0.8628 0.5754 0.4499 0.6438 0.6330

Pretrained parameters from ImageNet Resnet50 0.8969 0.8008 0.7589 0.7596 0.8041
Resnet101 0.9056 0.8104 0.7629 0.7909 0.8167

Pretrained parameters from CPMID Resnet50 0.8998 0.8078 0.7594 0.7973 0.8161
Resnet101 0.8977 0.7872 0.7528 0.7909 0.8072
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and different pretrained parameters to assess effective of 
transfer learning on small medical datasets comprehensively. 
In this study, the proposed dataset CPMID was first built by 
collection of several common open medical imaging data-
sets, which include various common radiological medical 
imaging modalities. We utilize the lesions and tissue organs 
contained within the images as category labels. The built 
progress of CPMID provides insights for the construction 
of medical imaging database with a large amount of dataset 
like ImageNet. This study conducted extensive experiments 
to evaluate the applicability and value of pretrained models 
on small-scale medical imaging datasets. In the assessment 
stage, a series of extensive classification and segmentation 
experiments were conducted on three other small medical 
image datasets, using three different training initialization 
methods and five different networks.

By comparing the three training initialization methods in 
downstream tasks, we found that training from pretrained 
parameters is much better than from scratch on small medi-
cal datasets. Especially, utilizing pretrained parameters from 
CPMID achieved the best balance result in terms of perfor-
mance and efficiency. Additionally, transfer learning based 
on CPMID pretrained parameters also offers better inter-
pretability by heatmaps in the classification task. Hence, for 
small-scale medical image dataset, transfer learning should 
be utilized regardless of a classification or segmentation 
task, which is significantly better than starting training from 
scratch. For all tasks, the model training from CPMID pre-
trained parameters can yield highly satisfactory results when 
using simpler network architectures. For complex networks 
such as ViT and complex tasks such as segmentation, the use 
of ImageNet-based pretrained parameters is also beneficial.

At the same time, when considering transfer learning 
methods solely based on ImageNet pretrained weights, our 
research also found that as the network structure grows 
more intricate, the performance enhances incrementally, 
particularly when using the ViT architecture for multi-
class classification tasks on the ChestXRay2017 dataset. A 
similar observation was noted in the segmentation experi-
mental tasks. These above observations are explainable. 
For deep learning applications, both complex models and 
tasks require a substantial amount of data for fitting. The 
visualizations of the gradient-weighted class activation 
maps demonstrated the utility of the proposed dataset 
in the realm of explainable artificial intelligence (XAI). 
Establishing trustworthiness in XAI is a critical research 
endeavor, particularly within the medical domain [32–34]. 
Furthermore, we contend that large-scale pretraining may 
offer a potential pathway to enhancing the interpretability 
of models. However, it is worth noting that the effective-
ness of transfer learning is not solely dependent on the 
complexity of the network architecture and the similarity 
between the pretraining dataset and the target task dataset. 

Other factors, such as the size of the target dataset and 
the availability of labeled data, also play crucial roles. 
Gathering a medical imaging dataset larger than CPMID 
for pretraining models is an important extension of the 
research. What’s more, fine-tuning large visual models 
(LVM) [35] on downstream small-scale datasets may be 
also a potential avenue for future research.
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