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Interstitial lung diseases (ILD) encompass over 200 lung disor-
ders marked by inflammation and/or fibrosis, posing significant 
diagnostic and treatment challenges [1]. The American Thoracic 
Society recommends a multidisciplinary approach for accurate 
ILD diagnosis [2]. In the real world, this multidisciplinary approach 
is time-consuming and resource-intensive. Clinicians hope to 
speed up the diagnostic process with the help of artificial intelli-
gence (AI). 

AI models have advanced ILD assessment by improving diag-
nostic efficiency and accuracy. However, different backgrounds of 
clinicians and data scientists cause inefficient collaboration in AI 
model development, which may hinder AI advancement and 
implementation. This paper offers a comprehensive overview of 
the varying roles in developing AI models for ILD management per-
ceived by clinicians and data scientists, promoting further interdis-
ciplinary partnerships. 

What is the role of clinicians for the AI application in ILD? Data col-
lection is the most fundamental task for clinicians. Accurate and 
comprehensive data enables precise evaluation. In addition to data 
collection, clinicians should also assume three key roles. First, clin-
icians provide new clinical issues. The research topics prevailing in 
contemporary AI studies predominantly stem from traditional clin-
ical concepts such as diagnosis and prognosis, which may not cover 
all requirements in ILD management. Table S1 online presents a 
compilation of common classical clinical topics, indicating a trend 
wherein the novel issues often sprout as refinement or enhance-
ment of specific classical topics. For example, conventional AI 
models can only classify patients into ILD or not ILD without 
considering the extent of fibrosis or other specific lesion (i.e. 
ground-glass opacities, and consolidation) on HRCT (high-resolu-
tion computed tomography) (Table S1 online). Later, the quantita-
tive fibrosis score was explored as a useful measurement for ILD
patients (Table S1 online). Besides improving AI models used in
specific classical topics, redefining patients is the easiest way to
facilitate innovation. For instance, an AI model for predicting prog-
nosis in idiopathic pulmonary fibrosis may already exist [3], fur-
ther research may also deal with developing prognostic AI
models for any fibrotic ILD [4]. These AI models among redefined
populations may help clinicians understand different ILD sub-
groups to provide a more precise management strategy (Table S1
online). Moreover, extending into new clinical decision-making
scenarios often arises naturally from significant advancements
within similar topics, which may also represent an another unmet
need. For example, research on quantitative assessment of emphy-
sema and lung volume using CT in patients with chronic obstruc-
tive pulmonary disease [5] can be applied to similar
investigations in patients with pulmonary hypertension [6] and
combined pulmonary fibrosis and emphysema [7] (Table S1
online). At times, algorithm-driven advancements can lead to
new clinical decision requirements. For instance, the traditional
ILD diagnostic pathway may not typically include the considera-
tion of comorbidity. However, with the aid of deep learning, it
may become possible to directly screen for ILD diagnoses from
electronic records [8]. These algorithmic advancements expand
the diagnostic possibilities and offer potential avenues for earlier
detection and more accurate ILD assessments. By leveraging the
power of deep learning algorithms, healthcare providers can
enhance their diagnostic capabilities and potentially improve
patient outcomes in the realm of ILD management (Table S1
online).
ing, and 
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Second, clinicians should demonstrate the efficacy of AI models 
in clinical cohorts. Noteworthy examples utilized quantitative CT 
and diagnostic classification models (Table S1 online). To investi-
gate the role of quantitative CT in ILD diagnosis and severity 
assessment, a thorough collection of clinical data may be required, 
encompassing lung function measurements and pertinent estab-
lished risk factors. Researchers primarily focus on examining the 
relationship between imaging findings and clinical outcomes, par-
ticularly in the context of fibrotic lung diseases such as idiopathic 
pulmonary fibrosis and progressive pulmonary fibrosis. Data-dri-
ven significance thresholds of quantitative CT can help to predict 
disease prognosis. Compared with quantitative CT, diagnostic or 
classification models that provide diagnosis conclusions directly 
from images without any intermediate steps cannot generate 
explainable features or lesion regions. Thus, clinicians are unable 
to estimate how AI models know the diagnosis or prognosis, which 
stops AI models from convincing. High-quality research frequently 
employs predictive probabilities linked to prognosis or lung func-
tion changes to demonstrate the clinical efficacy of AI models 
[9,10]. 

Third, clinicians should explain how models work from clinical 
perspectives. Clinicians are perplexed about how AI models can 
effectively work, and the confusion among clinicians often arises 
from a lack of algorithmic principles understanding [11] and dis-
ease mechanisms. Data scientists can only provide explanations 
of algorithmic principles. Understanding the disease mechanisms 
from algorithmic principles or comprehending algorithmic princi-
ples from disease mechanisms can only be achieved through the 
collaboration of data scientists and clinicians [12]. Recently, there 
have been notable efforts by clinicians towards achieving inter-
pretability. For instance, in studying systemic sclerosis-related 
ILD, researchers quantified the fibrosis progression based on radio-
mics scores derived from HRCT, which reflects the molecular 
changes [13] (Table S1 online). 

What is the role of data scientists in the application of AI in ILD? 
Building and optimizing models is undoubtedly one of the most 
important roles for data scientists, but it is not their only contribu-
tion. For data scientists, diagnosis is considered a classification 
task, which essentially involves the process of determining the cat-
egory label to which the data belongs. According to Table S1 online, 
radiomics has long been one of the most classic and effective AI 
strategies for imaging-based diagnosis of ILD. Recent advance-
ments have focused on emphasizing different anatomical or patho-
logical regions as distinct volumes of interest, enabling more 
precise feature extraction. Traditionally, radiomics has been paired 
with various machine learning models, such as Multilayer Percep-
tron, Support Vector Machine, and eXtreme Gradient Boosting. 
More recently, deep learning models like Inception-ResNet-v2 
and RadImageNet have entered the ILD classification landscape. 
The rise of attention mechanisms (like Vision Transformer) has fur-
ther become the new frontrunner in ILD classification tasks. For 
classification tasks, the organization of imaging data and evalua-
tion metrics have remained relatively consistent. At least, imaging 
data should include DICOM-formatted HRCT scans with corre-
sponding labels. However, incorporating radiologist-annotated 
regions or volumes of interest or key clinical parameters such as 
pulmonary function could potentially enhance model performance. 
Evaluation metrics are typically based on binary classification 
tasks, as multiclass problems often need to be decomposed into 
multiple binary tasks. Key metrics include area under the receiver 
operator characteristic curve (AUC), accuracy, sensitivity, preci-
sion, F1, specificity, positive predictive value, and negative predic-
tive value. To address class imbalance in multiclass tasks, macro-
and micro-averaging are sometimes employed. AUC is the most 
valued statistic, often alongside DeLong’s test to compare results 
between clinician experts and AI models or among different mod-
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els. Similarly, integrated discrimination improvement index, net 
reclassification improvement index, decision curve analysis, and 
calibration curves are common practices in clinical binary predic-
tion models. In addition to classification tasks, segmentation has 
emerged as a key focus in cutting-edge research, serving as a quan-
titative marker of disease severity or even a secondary outcome in 
randomized controlled trials. Because segmentation models 
remain relatively limited due to the challenge of accurately delin-
eating lesion boundaries by radiologists, the data-derived texture 
analysis method remains dominant. Data-derived texture analysis 
classifies pixels to achieve effects similar to segmentation models. 
Data preparation of segmentation tasks is similar to classification 
tasks, but evaluation relies heavily on the Dice index combined 
with the association between quantitative markers and clinical 
outcomes (lung function or survival) considered to assess the seg-
mentation’s clinical value. 

Secondly, algorithm development and optimization can be 
derived from domain knowledge to enhance inference and quan-
tification of disease patterns [14]. For clinicians, a multidisciplinary 
discussion is used to summarize single conclusions to generate an 
overall diagnosis in the hospitals. This process organizes data in a 
specific order highly distinguishing from deep learning models that 
tend to identify a final label (often diagnosis) via analyzing all 
input data (often cannot be obtained at the initial visit) simultane-
ously. In the realm of algorithm development, ensemble learning 
integrating HRCT images with clinical information using a series 
of machine learning models aligns well with the multidisciplinary 
discussion design [15]. However, the challenge lies in determining 
the sequence and significance of different types of information in 
ILD diagnosis. 

Thirdly, data scientists explain a model from a data perspective. 
Although various methods have been proposed in recent years to 
uncover the black box in deep neural networks, no convincing con-
clusions have been reached. The attention mechanism also aids in 
the interpretability of ILD-related AI models. Attention mechanism 
is a concept in machine learning that allows the model to focus on 
specific parts of the input data. The visualization of attention fur-
ther enhances the visual and intuitive understanding of both the 
training process and the reasoning behind the AI model’s decisions 
[16]. By visualizing the attention patterns, clinicians and research-
ers can gain insights into image areas or features that the model 
considers to be the most relevant to diagnosis or other tasks 
(Table S2 online). Visualization of an AI model can also make us 
see how AI models use input data to generate a final diagnosis, 
which may reflect pathology, or molecule features in ILD develop-
ment. Through that visualization, the AI model can also assist clin-
icians in understanding ILD mechanisms in the future. 

Typical successful collaboration cases. The development of the 
SOFIA (Systematic Objective Fibrotic Imaging Analysis Algorithm) 
(Table S1 online) model highlights a powerful collaboration 
between doctors and data scientists. Clinicians posed critical diag-
nostic challenges in classifying usual interstitial pneumonia (UIP), 
possible UIP, and inconsistent UIP, which are pivotal for fibrotic 
lung disease diagnosis. Data scientists responded by harnessing 
the capabilities of the Inception-ResNet-v2 model to effectively 
fit these complex imaging datasets. Through this interdisciplinary 
effort, the SOFIA model was created achieving human-level accu-
racy and offering reproducible diagnostic support in HRCT evalua-
tions. This collaboration underscores the transformative impact of 
integrating AI into healthcare. Later, the SOFIA model not only 
achieves human-level accuracy in high-resolution CT evaluations 
but also maintains accuracy in predicting progressive pulmonary 
fibrosis, showcasing the potential of AI to enhance diagnostic pre-
cision and patient outcomes. Following its development, clinicians 
across the United States, Canada, and other regions continued col-
laborating with data scientists. These partnerships have led to the
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Fig. 1. Different roles of clinicians or data scientists in developing AI of ILD (created by FigDraw). For clinicians, providing new issues, validating models in clinical cohorts, 
and explaining models from a disease view are major roles except for data collection. For data scientists, building models, optimizing algorithms, and explaining models from 
data view are three roles in AI research for ILD applications. AI: artificial intelligence; AIP: acute interstitial pneumonia; COP: cryptogenic organizing pneumonia; CTD-ILD: 
connective tissue disease-associated interstitial lung disease; DIP: desquamative interstitial pneumonia; HP: hypersensitivity pneumonitis; ILD: interstitial lung disease; IPF: 
idiopathic pulmonary fibrosis; NSIP: nonspecific interstitial pneumonia; PAP: pulmonary alveolar proteinosis; ROC: receiver operator characteristic curve. 
creation of a series of reliable AI-assisted diagnostic models 
(Table S1 online), further advancing the accuracy and efficiency 
of fibrotic lung disease diagnosis and enabling widespread access 
to sophisticated diagnostic tools. 

The development of AI models in ILD faces significant chal-
lenges, including the labor-intensive and subjective nature of data 
annotation, limited model generalization across diverse patient 
populations, and pressing ethical concerns. Model generalization 
struggles with variability in patient demographics, clinical settings, 
and imaging protocols. As a result, data annotation often requires 
expert input, leading to inconsistencies and high costs. Ethical con-
siderations, such as data privacy further complicate adoption. To 
address these issues, future efforts should focus on creating collab-
orative platforms that unify multidisciplinary expertise, and facili-
tating standardized data annotation protocols and shared datasets. 
Specific funding opportunities from government agencies, health-
care organizations, and AI industries can drive research into inno-
vative solutions, such as semi-supervised learning and large 
models with attention mechanisms to reduce annotation depen-
dency. Key research questions may include identifying approaches 
to ensure fairness across populations, integrating explainable AI to 
improve clinical trust, and establishing ethical guidelines for AI 
deployment in ILD. Challenging directions include using AI models 
to quantify molecular-level changes in the context of ILD and 
designing prognosis prediction algorithms that integrate the latest 
molecular biology discoveries. Technologically, the next advance-
ments in ILD may focus on training, fine-tuning, or deploying mul-
timodal large models. International multicenter collaboration will 
be crucial for enabling multi-ethnic studies, where diverse data 
from different ethnic groups, imaging devices, and imaging 
standards can further enhance AI-driven ILD diagnosis and quantifi-
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cation. Data scientists and clinicians have different roles in develop-
ing an AI model for ILD. To develop better AI models for ILD, it 
would be advantageous to have clinicians and data science special-
ists who are involved in ILD-related tasks working together as one 
team (Fig. 1). Collaborative applications developed for ILD have the 
potential to become powerful tools not only for the diagnosis and 
treatment of ILD but also for prevention and rehabilitation. More-
over, they can serve as valuable models for managing other chronic 
lung diseases, chronic conditions, and even life-cycle care. 
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