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BACKGROUND: Cerebral venous thrombosis (CVT) is a rare cerebrovascular disease. Routine brain magnetic resonance 
imaging is commonly used to diagnose CVT. This study aimed to develop and evaluate a novel deep learning (DL) algorithm 
for detecting CVT using routine brain magnetic resonance imaging.

METHODS: Routine brain magnetic resonance imaging, including T1-weighted, T2-weighted, and fluid-attenuated inversion 
recovery images of patients suspected of CVT from April 2014 through December 2019 who were enrolled from a CVT 
registry, were collected. The images were divided into 2 data sets: a development set and a test set. Different DL algorithms 
were constructed in the development set using 5-fold cross-validation. Four radiologists with various levels of expertise 
independently read the images and performed diagnosis within the test set. The diagnostic performance on per-patient and 
per-segment diagnosis levels of the DL algorithms and radiologist’s assessment were evaluated and compared.

RESULTS: A total of 392 patients, including 294 patients with CVT (37±14 years, 151 women) and 98 patients without CVT 
(42±15 years, 65 women), were enrolled. Of these, 100 patients (50 CVT and 50 non-CVT) were randomly assigned to the 
test set, and the other 292 patients comprised the development set. In the test set, the optimal DL algorithm (multisequence 
multitask deep learning algorithm) achieved an area under the curve of 0.96, with a sensitivity of 96% (48/50) and a 
specificity of 88% (44/50) on per-patient diagnosis level, as well as a sensitivity of 88% (129/146) and a specificity of 80% 
(521/654) on per-segment diagnosis level. Compared with 4 radiologists, multisequence multitask deep learning algorithm 
showed higher sensitivity both on per-patient (all P<0.05) and per-segment diagnosis levels (all P<0.001).

CONCLUSIONS: The CVT-detected DL algorithm herein improved diagnostic performance of routine brain magnetic resonance 
imaging, with high sensitivity and specificity, which provides a promising approach for detecting CVT.

GRAPHIC ABSTRACT: A graphic abstract is available for this article.
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Cerebral venous thrombosis (CVT) has shown an 
increasing incidence, estimated as 11.6/1 000 000 
per year in recent years.1,2 Rapid identification and 

treatment of CVT are of essential importance. How-
ever, missed diagnosis often occur, especially in the 

emergency department, due to various risk factors and 
atypical clinical presentation.3

Magnetic resonance imaging (MRI) is widely used as 
an initial imaging evaluation for admitted patients with 
cerebrovascular disorders and plays an important role in 

D
ow

nloaded from
 http://ahajournals.org by on D

ecem
ber 15, 2023

https://www.ahajournals.org/journal/str
https://www.ahajournals.org/doi/suppl/10.1161/STROKEAHA.122.041520
https://orcid.org/0000-0001-5078-8180
https://orcid.org/0000-0003-4065-0377
https://orcid.org/0000-0002-9412-7584
https://orcid.org/0000-0001-6566-8843
https://orcid.org/0000-0002-6618-3511
https://orcid.org/0000-0003-3920-2884
https://orcid.org/0000-0002-8849-2120
https://orcid.org/0000-0003-0293-2744
https://orcid.org/0000-0002-5773-0456
http://dx.doi.org/10.1161/STROKEAHA.122.041520
http://crossmark.crossref.org/dialog/?doi=10.1161%2FSTROKEAHA.122.041520&domain=pdf&date_stamp=2023-03-13


CL
IN

IC
AL

 A
ND

 P
OP

UL
AT

IO
N 

SC
IE

NC
ES

Yang et al Diagnosis of CVT Based on Deep Learning

1358    May 2023� Stroke. 2023;54:1357–1366. DOI: 10.1161/STROKEAHA.122.041520

detecting CVT.4 According to the guideline for the diag-
nosis of CVT,5 routine brain MRI is used to diagnose CVT 
with altered signal intensity of thrombus and the absence 
of a flow-void signal. Nevertheless, diagnosis based on 
routine MRI is time-consuming, laborious, and subjective, 
leading to inconsistent diagnosis (with sensitivity rang-
ing from 55% to 76%) among radiologists with different 
training and levels of experience.6,7

Deep learning (DL) is a branch of machine learning that 
has made great advances in diagnosing stroke by captur-
ing morphological structures and texture features from 
images.8,9 Thus, we hypothesize that DL can provide infor-
mation on imaging features which were overlooked and 
improve the diagnostic ability of routine brain MRI. To the 
best our knowledge, no studies have been conducted to 
apply DL algorithm of routine brain MRI in the diagnosis of 
CVT. The aim of our study was to develop a DL algorithm 
based on routine brain MRI sequences (T1-weighted [T1w], 
T2-weighted [T2w], and fluid-attenuated inversion recovery 
[FLAIR]) in order to identify thrombi in the cerebral venous 
system and to compare the diagnostic performance of this 
algorithm with that of radiologists’ assessment.

Data Availability
The study code is available at https://github.com/zhang-
haoyue/MSMT-DL. The authors do not have permission 
to share data. All clinical and imaging data used in our 
study are not publicly available.

METHODS
This was a retrospective study approved by our institutional 
review board, and the written informed consent was obtained. 
The article was prepared in accordance with STARD (Standards 
for Reporting Diagnostic Accuracy Studies).

Study Participants and Data Acquisition
Data of patients suspected of CVT between April 2014 and 
December 2019, whose main clinical manifestations were 
headache, dizziness, and blurred vision, were consecutively 
collected from a Registry Study of Cerebral Venous Sinus 
Thrombosis in China (https://www.clinicaltrials.gov; Unique 

identifier: NCT05448248). Based on comprehensive imaging 
and clinical information, patients were diagnosed with CVT and 
non-CVT (including white matter degeneration, chronic isch-
emic foci, lacunar infarct, and idiopathic cranial hypertension). 
Patients with poor image quality, insufficient imaging examina-
tion, or uncertain diagnosis were excluded. Fifty patients with 
and without CVT were randomly selected for the test set. The 
remaining patients were included in the development set.

Imaging examination was performed on 3T MR scanners 
(Magnetom Verio and Magnetom Trio; Siemens, Germany) with 
12-channel head coils. In routine MRI brain imaging protocol, 
the sequences of T1w, T2w, and FLAIR were acquired using 
the following parameters: T1w: repetition time (TR)/echo time 
(TE) 10 000/119 ms, field of view (FOV) 23.0×23.0 cm2, matrix 
308×308, slice thickness 5 mm; T2w: TR/TE 2750/85 ms, 
FOV 23.0×23.0 cm2, matrix 308×308, slice thickness 5 mm; 
FLAIR: TR/TE 10 000/119 ms, FOV 24.0×24.0 cm2, matrix 
308×308, slice thickness 5 mm.

Conventional Imaging Evaluation and 
Thrombus Labeling
Two neuroradiologists (X.Y. with 6 years’ experience and Q.Y. 
with 15 years’ experience) performed a consensus reading of 
all available imaging studies (magnetic resonance venography, 
contrast-enhancement MRI, contrast-enhancement magnetic 
resonance venography, and black-blood thrombus imaging) 
and clinical information for each patient to obtain the reference 
standard, including the presence of thrombus as well as the 
thrombosed segments (superior sagittal sinus, straight sinus, 
left transverse sinus, right transverse sinus, left sigmoid sinus, 
right sigmoid sinus, confluence of sinus, and cortical veins). 
Based on the reference standard, one neuroradiologist (X.Y.) 
annotated the thrombus on the routine MRI images by drawing 
a bounding box (BBOX) that fully contained the region of the 
thrombus on each slice. To ensure the accuracy of annotations, 
another neuroradiologist (Q.Y.) performed a careful review and 
the refined annotations were served as ground truth.

Development of the DL Algorithm
The DL algorithm was developed based on 2-dimensional slices. 
Inspired by the Faster-RCNN (Region Based Convolutional 
Neural Network),10 our DL algorithm adopted a 2-stage archi-
tecture: feature extraction and CVT detection. Two different 
feature extraction schemes corresponding to different input 
sequences were used (Figure 1).

The single-sequence scheme used single sequence (T1w, 
T2w, or FLAIR) to develop the corresponding DL algorithm 
(T1-DL, T2-DL, or FLAIR-DL). The single-sequence feature 
extraction module was Resnet-50,11 where the output of each 
block would be fed into the Feature Pyramid Network12 in the 
CVT detection module.

The multisequence scheme used all 3 sequences of rou-
tine MRI simultaneously and combined the multitask learning 
strategy to develop a multisequence multitask DL algorithm 
(MSMT-DL). For multisequence input, each sequence had an 
independent feature extraction branch, except for the first block, 
which shared model parameters among the 3 branches. In sub-
sequent blocks, the outputs of the 3 branches underwent feature 
fusion in feature fusion block and were then fed into 2 differ-
ent parts. The output of each block in the multisequence feature 

Nonstandard Abbreviations and Acronyms

BBOX	 bounding box
CVT	 cerebral venous thrombosis
DL	 deep learning
FLAIR	 fluid-attenuated inversion recovery
MRI	 magnetic resonance imaging
MSMT-DL	 multisequence multitask DL algorithm
T1w	 T1-weighted
T2w	 T2-weighted
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extraction module was fed into the Feature Pyramid Network. In 
addition, the output of each feature fusion block would also be 
fed into the Classification Ancillary Module, which was used to 
guide the algorithm to pay attention to the presence of thrombus 
in the slice, thus forming a multitask learning paradigm.

For each algorithm, 5-fold cross-validation was used to train 
models and select optimal hyper-parameters for the develop-
ment set. In the test set, the final prediction of each algorithm 
was obtained by combining the outputs of all 5 models using 
the nonmaximum weighting suppression method.13 The module 
design and training process of the DL algorithms was detailed 
in the Supplemental Material, and the code is available.

Evaluation of Diagnosis Performance of the DL 
Algorithm
Diagnostic performance was evaluated on per-patient and per-
segment diagnosis levels in the test set.

On per-patient diagnosis level, patients were diagnosed 
with CVT if one or more thrombosed segments were present. 
The BBOX for predicting a thrombus using DL algorithm was 
termed the detection BBOX. The average of the top 3 largest 
predictive probabilities of the detection BBOXs for each patient 
was used as the probability of CVT positivity in evaluating per-
patient diagnostic performance.

On per-segment diagnosis level, if one or more thrombi 
were present, the corresponding cerebral venous segment was 
defined as a thrombosed segment. Specifically, the ground truth 
BBOXs belonging to the same segment formed the ground 
truth volume, and the adjacent detection BBOXs were stacked 
to form a detection volume that was termed the D-volume. 
As shown in Figure 2, true-positive, false-positive, and false-
negative readings on per-segment level were calculated based 
on the intersection-over-union between D-volumes and ground 
truth volumes. True-positive, false-positive, and false-negative 
readings were further used for the evaluation of per-segment 
diagnostic performance.

Reader Study of Radiologists
The reader study was conducted on the test set, and the diag-
nostic performance of radiologists’ assessment was used for 
comparison with the best DL algorithm. In the first round, 4 
radiologists (reader 1 with 10 years, reader 2 with 5 years, 
reader 3 with 5 years, and reader 4 with 3 years of experi-
ence, respectively) who were blinded to the clinical information, 
radiological reports, and other imaging examinations reviewed 
the imaging data independently. The radiologists labeled the 
existence of thrombus and the corresponding thrombosed 
venous segments. The results of the 4 readers were recorded 

Figure 1. Deep learning model architecture.
 FLAIR indicates fluid-attenuated inversion recovery; T1w, T1-weighted; and T2w, T2-weighted.

D
ow

nloaded from
 http://ahajournals.org by on D

ecem
ber 15, 2023

https://www.ahajournals.org/doi/suppl/10.1161/STROKEAHA.122.041520


CL
IN

IC
AL

 A
ND

 P
OP

UL
AT

IO
N 

SC
IE

NC
ES

Yang et al Diagnosis of CVT Based on Deep Learning

1360    May 2023� Stroke. 2023;54:1357–1366. DOI: 10.1161/STROKEAHA.122.041520

as R1-F (reader 1 for first time), R2-F (reader 2 for first time), 
R3-F (reader 3 for first time), and R4-F (reader 4 for first time), 
respectively. In addition to the individual diagnostic results of 
each radiologist, a pooled determination was reported for each 
patient by a majority vote among 4 radiologists. If the votes 
were the same, the radiologist with the highest seniority was 
selected as the decisive voice. Majority vote results were 
recorded as RV-F (reader vote for first time).

After a washout period, reader 1 and reader 3 were invited 
to conduct a second-round reader study with access to clinical 
information. Similar to the first round reader study, 2 radiologists 
independently labeled the existence of a thrombus and the cor-
responding thrombosed venous segments. The results of the 2 
radiologist assessments were recorded as R1-S (reader 1 for 
second time) and R3-S (reader 3 for second time), respectively.

Statistical Analysis
On per-patient diagnosis level, receiver operating characteris-
tic curves and corresponding area under the curve of different 
algorithms were calculated and compared using the Delong 
test.14 For each algorithm, Youden J statistics were used on the 
development set to determine a classification threshold and to 
then compute the accuracy, sensitivity, and specificity of the 
test set based on this threshold.15 On per-segment diagnosis 
level, sensitivity and specificity were calculated based on the 
per-segment TP, false positive, and false negative.16

The 95% CIs were estimated with bootstrapping.17 The 
McNemar test was used to compare accuracy, sensitivity, and 
specificity. Cohen and Fleiss κ were used to measure the inter-
reader agreement between 2 radiologists and among all the 
radiologists, respectively. The agreement value was defined as 
0 to 0.20 as slight, 0.21 to 0.40 as fair, 0.41 to 0.60 as moder-
ate, 0.61 to 0.80 as substantial, and 0.81 to 1.00 as almost 
perfect agreement.18 Two-tailed P<0.05 was considered to 
indicate a statistically significant difference. Statistical analy-
ses were performed on R software (version 3.6.1; https://
www.r-project.org/).

RESULTS
Study Participants
A total of 489 patients were initially recruited (358 
with CVT and 131 non-CVT) in our study. Ninety-seven 
patients were excluded due to poor image quality (n=8), 
insufficient imaging examination (n=83), and uncertain 
diagnosis (n=6). A total of 392 participants, including 
294 patients with CVT (37±14 years, 151 women) and 
98 non-CVT patients (42±15 years, 65 women), were 
enrolled in the study. The medical and demographic char-
acteristics of the patients are summarized in Table S1. 
There were no differences in the frequencies of different 
thrombus locations and sizes between men and women.

The development set included 244 patients with CVT 
with 698 thrombosed venous segments and 48 non-
CVT patients. In the test set, there were 50 patients with 
CVT with 146 thrombosed venous segments and 50 
non-CVT patients. Parenchymal lesions were visualized 
in 44% (22/50) of the patients with CVT in the test set.

Diagnostic Performance of DL Algorithms
The diagnostic performance of the DL algorithms on per-
patient and per-segment diagnosis levels in the test set 
was summarized in Table 1. On per-patient diagnosis level, 
all DL algorithms, except T1-DL, achieved area under the 
curve above 0.90. The area under the curve of 3 single-
sequence algorithms were between 0.82 and 0.94: T1-DL 
was 0.82 (95% CI, 0.73–0.90), T2-DL was 0.93 (95% CI, 
0.87–0.97), and FLAIR-DL was 0.94 (95% CI, 0.90–0.98). 
The MSMT-DL achieved the highest area under the curve 
of 0.96 (95% CI, 0.92–0.99). The Delong test showed 
that the diagnostic performance of MSMT-DL was better 

Figure 2. Examples of 3-dimensional detection performance on per-segment diagnosis level.
Adjacent detection bounding boxes (D-BBOXs) were stacked to form a detection volume, termed the D-volume. The ground truth bounding boxes 
(GT-BBOXs) belong to the same segment formed the GT-volume. For each patient, true-positive (TP), false-positive (FP), and false-negative (FN) 
readings were calculated according to the intersection-over-union (IoU) between D-volumes and GT-volumes. A D-volume was defined as a TP 
reading if at least one D-BBOX belonged to this detection volume, with any GT-BBOX whose IoU was not less than the judgment threshold; 
otherwise, the reading was defined as a FP. For a GT-Volume, readings were defined as FNs if the IoU of all the GT-BBOXs belonging to the 
ground truth volume with any D-BBOX was less than the judgment threshold. The judgment threshold was set to 0.5. CS indicates confluence of 
sinus; LSS, left sigmoid sinus; LTS, left transverse sinus; SS, straight sinus; and SSS, superior sagittal sinus.
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than that of T1-DL (P<0.001) but was not significantly 
better than that of the other algorithms. The per-patient’ 
receiver operating characteristic curves of the different DL 
algorithms were shown in Figure 3.

The accuracy and sensitivity of MSMT-DL were higher 
than those of any single-sequence algorithm (accuracy: 
T1-DL, P=0.001; T2-DL, P=0.007; FLAIR-DL, P=0.04; 
sensitivity: T1-DL, P=0.01; T2-DL, P=0.004; FLAIR-DL, 
P=0.03). The specificity of MSMT-DL was 88%, which 
was not significantly different from that of the other 
algorithms (T1-DL, P=0.11; T2-DL, P=0.69; FLAIR-DL, 
P=0.69). The per-patient sensitivity of the MSMT-DL 
was 95% (21/22) in patients with CVT with parenchymal 
lesions and 96% (27/28) in patients with CVT without 
parenchymal lesions.

On per-segment diagnosis level, the sensitivity of the 
single-sequence DL algorithms was not higher than 80% 
(T1-DL, 68%; T2-DL, 79%; and FLAIR-DL, 72%). MSMT-
DL achieved the highest sensitivity of 88% (129/146 
[95% CI, 82%–94%) compared to any single-sequence 
algorithm (all P<0.001). The specificity of MSMT-DL was 
higher than that of T1-DL (80% versus 64%, P<0.001) 

but was similar to that of the other 2 algorithms (T2-DL, 
P=0.54; FLAIR-DL, P=0.99). The per-segment sensitivi-
ties of MSMT-DL were 85% (33/39), 91% (41/45), and 
89% (49/55) in the acute, subacute, and chronic stage 
groups, respectively.

The top 3 sensitivities of MSMT-DL for detecting 
specific thrombosed segments were found for the left 
sigmoid sinus, left transverse sinus, and straight sinus 
(Table  2). Examples of true-positive, false-positive, and 
false-negative diagnosis using MSMT-DL in different 
thrombosed segments were illustrated in Figure S3.

Reader Study of Radiologists
The diagnostic performances of the 4 radiologists as 
well as a comparison with MSMT-DL were summarized 
in Table 1. In the first round, the per-patient sensitivities 
of the 4 radiologists ranged from 72% to 78%, and all 
were lower than that of MSMT-DL (R1-F, P=0.01; R2-F, 
P<0.001; R3-F, P=0.01; R4-F, P=0.002). The specifici-
ties were above 90% across the first 3 readers, whereas 
R4-F was slightly lower with 80% (95% CI, 68%–90%). 

Table 1.  Performances of Deep Learning Algorithms and Radiologists

Algorithm 

Per-patient Per-segment

AUC  
[95% CI] 

Accuracy (%)  
[95% CI] 

Sensitivity (%)  
[95% CI] 

Specificity (%)  
[95% CI] 

Sensitivity (%)  
[95% CI] 

Specificity (%)  
[95% CI] 

T1-DL 0.82 [0.73–0.90] 77 (77/100) [69–85] 78 (39/50) [66–90] 76 (38/50) [64–86] 68 (99/146) [56–78] 64 (416/654) [60–67]

T2-DL 0.93 [0.87–0.97] 81 (81/100) [73–88] 78 (39/50) [66–89] 84 (42/50) [73–94] 79 (115/146) [71–86] 78 (513/654) [74–82]

FLAIR-DL 0.94 [0.90–0.98] 84 (84/100) [76–91] 84 (42/50) [73–94] 84 (42/50) [73–94] 72 (105/146) [61–82] 80 (522/654) [75–84]

MSMT-DL 0.96 [0.92–0.99] 92 (92/100) [86–97] 96 (48/50) [90–100] 88 (44/50) [78–96] 88 (129/146) [82–94] 80 (521/654) [75–84]

P value (versus MSML-DL)

 � T1-DL <0.001 0.001 0.01 0.11 <0.001 <0.001

 � T2-DL 0.08 0.007 0.004 0.69 <0.001 0.54

 � FLAIR-
DL

0.23 0.04 0.03 0.69 <0.001 0.99

 � R1-F … 85 (85/100) [77–92] 78 (39/50) [67–88] 92 (46/50) [84–98] 45 (65/146) [35–55] 98 (638/654) [96–99]

 � R2-F … 86 (86/100) [79–93] 72 (36/50) [58–84] 100 (50/50) [100–100] 47 (68/146) [35–58] 96 (630/654) [94–98]

 � R3-F … 85 (85/100) [78–92] 78 (39/50) [66–89] 92 (46/50) [84–98] 50 (73/146) [41–59] 98 (639/654) [96–99]

 � R4-F … 78 (78/100) [70–85] 76 (38/50) [64–88] 80 (40/50) [68–90] 58 (85/146) [47–69] 96 (629/654) [94–98]

 � RV-F … 86 (86/100) [79–92] 78 (39/50) [66–89] 94 (47/50) [87–100] 71 (104/146) [61–81] 92 (604/654) [89–95]

 � R1-S … 92 (92/100) [86–97] 92 (46/50) [84–98] 92 (46/50) [83–98] 57 (83/146) [46–67] 95 (622/654) [93–97]

 � R3-S … 86 (86/100) [79–92] 84 (42/50) [73–94] 88 (44/50) [78–96] 56 (82/146) [45–66] 93 (606/654) [90–96]

P value (versus MSML-DL)

 � R1-F … 0.17 0.01 0.73 <0.001 <0.001

 � R2-F … 0.24 <0.001 0.03 <0.001 <0.001

 � R3-F … 0.17 0.01 0.73 <0.001 <0.001

 � R4-F … 0.004 0.002 0.39 <0.001 <0.001

 � RV-F … 0.26 0.01 0.51 <0.001 <0.001

 � R1-S … 0.99 0.69 0.69 <0.001 <0.001

 � R3-S … 0.24 0.07 0.99 <0.001 <0.001

AUC indicates area under the curve; FLAIR-DL, deep learning algorithm using FLAIR-weighted image; MSMT-DL, multisequence multitask deep learning algorithm; 
R1-F, reader 1 for first time; R2-F, reader 2 for first time; R3-F, reader 3 for first time; R4-F, reader 4 for first time; RV-F, reader vote for first time; R1-S, reader 1 for 
second time; R3-S, reader 3 for second time; T1-DL, deep learning algorithm using T1-weighted image; and T2-DL, deep learning algorithm using T2-weighted image.
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The specificity of MSMT-DL was not significantly dif-
ferent from that of all radiologists’ assessments, except 
for R2-F (R1-F, P=0.73; R2-F, P=0.03; R3-F, P=0.73; 
R4-F, P=0.39). As shown in Figure 3, the corresponding 
points of the readers on the receiver operating charac-
teristic curve were all inside the MSMT-DL curve, except 
for R2-F. The specificity of R2-F was 100% (95% CI, 
100%–100%), but the corresponding sensitivity was 
only 72% (95% CI, 58%–84%).

The per-segment sensitivities of all 4 readers were 
below 60%, which were also lower than that of the 

MSMT-DL (all P<0.001). An additional 30% (44/146) 
to 44% (64/146) of thrombosed segments were 
revealed by MSMT-DL than 4 readers. The per-segment 
specificities of R1-F to R4-F were 98%, 96%, 98%, and 
96%, respectively.

By aggregating all 4 readers through majority voting, 
the sensitivity and specificity of the per-patient diagno-
sis level were found to be 78% (95% CI, 66%–89%) 
and 94% (95% CI, 87%–100%), respectively. On per-
segment diagnosis level, the sensitivity and specificity 
were 71% (95% CI, 61%–81%) and 92% (95% CI, 

Figure 3. Comparison of deep learning (DL) algorithms and radiologists’ assessment on per-patient diagnosis level.
The diagnostic performances of DL algorithms were described by receiver operating characteristic (ROC) curves. According to the derived 
sensitivity and specificity, the diagnostic performance of the reader study was plotted on the ROC curve and was represented using inverted 
triangles and 5-pointed stars. AUC indicates area under the curve; FLAIR, fluid-attenuated inversion recovery; and MSMT-DL, multisequence 
multitask deep learning algorithm.
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89%–95%), respectively. Compared with RV-F, MSMT-
DL had higher sensitivity at the per-patient diagnosis 
level (96% versus 78%; P=0.01) and per-segment diag-
nosis level (88% versus 71%; P<0.001).

On per-patient diagnosis level, the Fleiss κ coefficient 
was 0.71 across all 4 readers, and the Cohen κ coeffi-
cients between any 2 readers ranged from 0.62 to 0.77. 
On the per-segment diagnosis level, the Fleiss κ coef-
ficient was 0.56, and the Cohen κ coefficients between 
any 2 readers were <0.60 (ranging from 0.47 to 0.59).

The sensitivities of MSMT-DL and the readers for 
detecting thrombus in different segments are shown in 
Table 2. In 6 of 8 segments, including left sigmoid sinus, 
left transverse sinus, right sigmoid sinus, right trans-
verse sinus, straight sinus, and superior sagittal sinus, 
MSMT-DL had a sensitivity of over 90%. Representative 
CVT-positive cases (admitted with headache as the first 
symptom) with correct diagnosis by MSMT-DL but that 
were overlooked by the radiologist for case of thrombus 
in different venous sinus were shown in Figure 4.

Second-Round Reader Study of Radiologists
As shown in Table 1 and Figure 3, the diagnostic perfor-
mance on the per-patient diagnosis level improved for 
both radiologists when clinical information was available. 
The accuracy, sensitivity, and specificity of the R1-S were 
92% (95% CI, 86%–97%), 92% (95% CI, 84%–98%), 
and 92% (95% CI, 83%–98%), respectively. The accu-
racy, sensitivity, and specificity of the R3-S were 86% 
(95% CI, 79%–92%), 84% (95% CI, 73%–94%), and 
88% (95% CI, 78%–96%), respectively. Neither radiolo-
gist performed significantly differently from MSMT-DL at 
the per-patient diagnosis level (all P>0.05).

On per-segment diagnosis level, there was a slight 
improvement in the sensitivity of radiologist assessment 
for 2 radiologists (R1-F to R1-S, 45% to 57%; R3-F to 
R3-S, 50% to 56%), but this was still significantly lower 
than that of MSMT-DL (all P<0.001). The specificities 

of R1-S and R3-S were 95% (95% CI, 93%–97%) and 
93% (95% CI, 90%–96%), respectively.

On per-patient and per-segment diagnosis levels, the 
Cohen κ coefficients between R1-S and R3-S were 
0.64 and 0.50, respectively.

DISCUSSION
In our study, we developed a MSMT-DL algorithm 
tailored for CVT detecting via routine brain MRI. The 
MSMT-DL takes T1w, T2w, and FLAIR images jointly 
as inputs to exploit complementary multisequence 
information and combined the global and local infor-
mation of images through a multitask learning strat-
egy. The MSMT-DL achieved high sensitivity on 
per-patient and per-segment diagnosis levels with-
out introducing excessive false-positive detection. An 
additional 30% (44/146) to 44% (64/146) of throm-
bosed segments were further revealed by MSMT-DL 
as compared to radiologist.

Routine brain MRI is an essential and common 
imaging examination in detecting CVT at admission, 
which can guide the subsequent strategy of imaging 
examination and treatment.19,20 However, the MRI find-
ings of CVT vary with the composition of the thrombus 
and identifying the signal of the thrombus in a special 
stage using naked eye is laborious. Deoxyhemoglobin in 
acute thrombi with isointensity on T1w and hypointen-
sity on T2w is similar to the signal of slow blood flow. 
Hemosiderin in chronic thrombus causes isointensity or 
hypointensity on T1w and hypointensity on T2w, similar 
to the acute thrombus signal. These situations lead to 
varied diagnostic performances of different routine MRI 
sequences in CVT. Sadigh et al6 showed that the sen-
sitivities of T1w and T2w images were 55% and 58%, 
respectively. Patel et al21 reported that the combination 
of routine MRI sequences showed an overall sensitivity 
of 79.2% and a specificity of 89.9%, with moderate inter-
rater agreement.22–24

Table 2.  Subgroup Analysis of Performances according to Sensitivities of MSMT-DL and 
Radiologists for Detecting CVT in Different Segments on Test Set

Segment MSMT-DL Reader 1 Reader 2 Reader 3 Reader 4 Aggregate reader 

Cor (n=8) 63 (5/8) 0 (0/8) 63 (5/8) 13 (1/8) 50 (4/8) 75 (6/8)

LSS (n=17) 100 (17/17) 35 (6/17) 12 (2/17) 71 (12/17) 53 (9/17) 65 (11/17)

LTS (n=19) 100 (19/19) 21 (4/19) 16 (3/19) 37 (7/19) 47 (9/19) 47 (9/19)

RSS (n=28) 93 (26/28) 64 (18/28) 54 (15/28) 68 (19/28) 64 (18/28) 79 (22/28)

RTS (n=30) 90 (27/30) 50 (15/30) 53 (16/30) 30 (9/30) 50 (15/30) 77 (23/30)

CS (n=5) 80 (4/5) 0 (0/5) 60 (3/5) 0 (0/5) 0 (0/5) 60 (3/5)

SS (n=6) 100 (6/6) 50 (3/6) 33 (2/6) 0 (0/6) 50 (3/6) 50 (3/6)

SSS (n=33) 94 (31/33) 58 (19/33) 67 (22/33) 76 (25/33) 82 (27/33) 82 (27/33)

Data are percentages, with numerator and denominator in parentheses. Cor indicates cortical veins; CS, confluence 
of sinus; CVT, cerebral venous thrombosis; LSS, left sigmoid sinus; LTS, left transverse sinus; MSMT-DL, multisequence 
multitask deep learning algorithm; RSS, right sigmoid sinus; RTS, right transverse sinus; SS, straight sinus; and SSS, 
superior sagittal sinus.
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In our study, DL algorithms (T1-DL, T2-DL, and 
FLAIR-DL) constructed based on different single-
sequence images improved the diagnostic performance 
of the 3 MRI sequences compared with those found in 
the literature, especially T2w and FLAIR. This could be 
explained by the flow-void effect of cerebral venous sinus 
on T2w and FLAIR images being more obvious than 
within T1w images. Moreover, we developed MSMT-DL 
with multisequence image input (T1w, T2w, and FLAIR) 
through multitask learning. The multisequence feature 
extraction module of MSMT-DL effectively integrated 
information from multiple sequences into enhanced 
feature representations. By adding auxiliary classifica-
tion branches to perform the multitask learning strategy, 
the MSMT-DL could observe the image characteristics 
from a global perspective and realize the complemen-
tarity of global information and local information, which 
lead to a more accurate diagnosis. Therefore, compared 
with the single-sequence DL algorithm, the sensitivity 
of MSMT-DL was increased by 12% to 18% on per-
patient diagnosis level and 9% to 20% on the per-seg-
ment diagnosis level.

The results of the reader study illustrated that the 
diagnostic performance of MSMT-DL in diagnosing 
CVT was as good as or better than that of radiologist 
assessment. MSMT-DL may perform better on the fol-
lowing venous abnormalities: (1) acute/chronic throm-
bus (signal capture); (2) the tiny arachnoid granulations 
and septa (morphology capture), and (3) thrombus in 

the deep venous sinus (position capture). These results 
show that the DL algorithm has unique advantages in 
identifying subtle features of venous thrombus, such 
as weak signals, venous size, and abnormal shape. We 
found that the per-segment sensitivity of MSMT-DL was 
lower than that of assessment by one radiologist and 
an aggregate reader only in the diagnosis of cortical 
vein thrombosis, and higher than that of all radiologists 
and an aggregate reader in all other venous segments 
when diagnosing CVT based on imaging alone. We note 
that some patients with cortical vein thrombosis in the 
test set were accompanied by subarachnoid hemor-
rhage. Both cortical vein thrombosis and subarachnoid 
hemorrhage on T1w, T2w, and FLAIR images showed 
hyperintense signals, which may interfere with the judg-
ment of MSMT-DL. In addition to the advantages in 
diagnostic performance, as a computer-aided diagnosis 
system, MSMT-DL provided objective results, which led 
to better agreement. Through the results of the 2-round 
reader study, we found that clinical information may 
help radiologists improve the diagnostic accuracy of 
CVT. This has inspired our research group to develop 
DL algorithms incorporating clinical information in 
future research efforts.

There are several limitations in our study. First, owing 
to the relatively rare incidence of the evaluated condi-
tion, sample size was not calculated and was determined 
based on prior study dealing with DL in acute stroke 
imaging.25 Thus, the sample size of the CVT data set 

Figure 4. Three cases with correct 
diagnosis by the multisequence 
multitask deep learning algorithm 
(MSMT-DL) and misdiagnosis by 
radiologist.
A, A 19-year-old woman with thrombus in 
the superior sagittal sinus; (B) a 14-year-
old girl with thrombus in the sagittal 
sinus; and (C) a 27-year-old woman with 
thrombus in the right transverse sinus. The 
green bounding box (BBOX) indicates the 
ground truth, and the red BBOX indicates 
the detection of MSMT-DL in magnetic 
resonance imaging images. The red line 
of the corresponding level is shown in the 
magnetic resonance venography (MRV) 
image. FLAIR indicates fluid-attenuated 
inversion recovery; T1w, T1-weighted; and 
T2w, T2-weighted.
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might not be enough to achieve the best-performing 
algorithm. The generalizability of the algorithm is also 
limited by the fact that the study data is derived from 
a single medical center. External validation and multi-
center studies are necessary in future studies. Second, 
the time of diagnosis and the presence of parenchymal 
abnormalities might have an effect on the algorithm. 
Therefore, we will enlarge the patient sample and input 
more information to analyze the diagnostic performance 
of the DL algorithm in different situations in future work. 
Third, there was insufficient disease diversity among 
patients included in this study. More patients with isch-
emic strokes or other brain lesions will be included in 
our future work to enhance the DL algorithm’s discrimi-
nation and to enable it to be more adaptable to clini-
cal complexity. Fourth, we did not evaluate radiologist’s 
performance in detecting CVT assisted with our DL 
algorithm. It will be an interesting study to explore how 
readers and the DL algorithm interact in clinical practice 
and the changes in the diagnostic performance of radi-
ologists with the aid of DL algorithm. Finally, due to SWI 
and T2* sequences are not standard MRI protocol in our 
institution for diagnosing CVT; thus, these 2 sequences 
were not included in this study. In the future, we will add 
these sequences into another algorithm construction 
with a larger data set.

CONCLUSIONS
In the present study, we developed a MSMT-DL algo-
rithm based on routine brain MRI. MSMT-DL offers 
numerous advantages, including high sensitivity, consis-
tency of diagnosis, and reduce time. The DL model may 
assist in the initial screening of patients suspected of 
CVT. It is critical in helping radiologists accurately and 
rapidly diagnose patients with CVT and locate thrombus 
by routine MRI.
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