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Abstract. In clinical practice, anisotropic volumetric medical images
with low through-plane resolution are commonly used due to short
acquisition time and lower storage cost. Nevertheless, the coarse reso-
lution may lead to difficulties in medical diagnosis by either physicians
or computer-aided diagnosis algorithms. Deep learning-based volumetric
super-resolution (SR) methods are feasible ways to improve resolution,
with convolutional neural networks (CNN) at their core. Despite recent
progress, these methods are limited by inherent properties of convolution
operators, which ignore content relevance and cannot effectively model
long-range dependencies. In addition, most of the existing methods use
pseudo-paired volumes for training and evaluation, where pseudo low-
resolution (LR) volumes are generated by a simple degradation of their
high-resolution (HR) counterparts. However, the domain gap between
pseudo- and real-LR volumes leads to the poor performance of these
methods in practice. In this paper, we build the first public real-paired
dataset RPLHR-CT as a benchmark for volumetric SR, and provide base-
line results by re-implementing four state-of-the-art CNN-based meth-
ods. Considering the inherent shortcoming of CNN, we also propose
a transformer volumetric super-resolution network (TVSRN) based on
attention mechanisms, dispensing with convolutions entirely. This is the
first research to use a pure transformer for CT volumetric SR. The exper-
imental results show that TVSRN significantly outperforms all baselines
on both PSNR and SSIM. Moreover, the TVSRN method achieves a bet-
ter trade-off between the image quality, the number of parameters, and
the running time. Data and code are available at https://github.com/
smilenaxx/RPLHR-CT.
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1 Introduction

Volumetric medical imaging, such as computed tomography (CT) and magnetic
resonance imaging (MRI), is an important tool in diagnostic radiology. Although
high-resolution volumetric medical imaging provides more anatomical and func-
tional details that benefit diagnosis [3,22,24], long acquisition time and high
storage cost limit the wide application in clinical practice. As a result, it is
routine to acquire anisotropic volumes in practice, which have high in-plane res-
olution and low through-plane resolution. However, the disparity in resolution
can lead to several challenges: (1) the inability to display sagittal or coronal views
with adequate detail [10]; (2) the insufficiency of spatial resolution to observe
the details of lesions [24] and; (3) the challenge to the robustness of 3D medical
image processing algorithms [8,16]. A feasible solution is to use super-resolution
(SR) algorithms [26] to upsample anisotropic volumes along the depth dimen-
sion, in order to restore high resolution (HR) from low resolution (LR). This
approach is referred to as “volumetric SR.”

CNN-based algorithms have achieved outstanding performance in SR for
natural images [20] and these techniques have been introduced for volumetric
SR [1,4,6,12,13,15,17,18,23,25]. Though significant advances have been made,
CNN-based algorithms remain limited by the inherent weaknesses of convolu-
tion operators. On the one hand, using the same convolution kernel to restore
various regions may neglect the content relevance. Liu et al. [13] take this into
consideration and propose a multi-stream architecture based on lung segmen-
tation to recover different regions separately, but this is hard to be a one-size-
fits-all solution. On the other hand, the non-local content similarity of images
has been used as an effective prior in image restoration [27]. Unfortunately, the
local processing principle of the convolution operator makes algorithms diffi-
cult to effectively model long-range dependence. Recently, transformer networks
have shown good performance in several visual problems of natural image [5,14],
including SR [2,11]. Self-attention mechanism is the key to the success of trans-
former. Compared to CNN-based algorithms, transformer can model long-range
dependence in the input domain and perform dynamic weight aggregation of
features to obtain input-specific feature representation enhancement [9]. These
results prompted us to explore a transformer-based SR method.

Another impediment to the application of volumetric SR methods is data.
Most relevant studies use HR volume as ground truth and degrade it to construct
paired pseudo-LR volumes with which to train and evaluate methods [4,15,17,
18,23,25]. For instance, Peng et al. [17] perform sparse sampling on the depth
dimension of thin CT to obtain pseudo thick CT. Zhao et al. [25] simulate
pseudo-LR MRI by applying an ideal low-pass filter to the isotropic T2-weighted
MRI followed by an anti-ringing Fermi filter. However, the performance will be
affected when test on the real-LR volume [1] because of the domain gap between
pseudo- and real-LR volume. To avoid it, some studies collect real-paired LR-
HR volumes [1,6,12,13,16]. For example, Liu et al. [13] collect 880 real pairs of
chest CTs and construct a progressive upsampling model to reconstruct 1 mm
CT from 5mm CT. In the field of MRI, a large data set containing 1,611 real
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pairs of T1-weighted MRIs have been used to develop the proposed SCSRN
method [12]. However, a benchmark to objectively evaluate various volumetric
SR methods is still lacking.

To address this deficiency, the first goal of this work is to curate a medium-
sized dataset, named Real-Paired Low- and High-Resolution CT (RPLHR-CT),
for volumetric SR. RPLHR-CT contains real-paired thin-CTs (slice thickness
1mm) and thick-CTs (slice thickness 5 mm) of 250 patients. To the best of our
knowledge, RPLHR-CT is the first benchmark for volumetric SR, which enables
method comparison. The other goal of our work is to explore the potential of
transformer for volumetric SR. Specifically, we propose a novel Transformer Vol-
umetric Super-Resolution Network (TVSRN). TVSRN is designed as an asym-
metric encoder-decoder architecture with transformer layer, without any convo-
lution operations. TVSRN is the first pure transformer used for CT volumetric
SR. We re-implement and benchmark state-of-the-art CNN-based volumetric
SR algorithms developed for CT and show that our TVSRN outperforms exist-
ing algorithms significantly. Additionally, TVSRN achieves a better trade-off
between image quality, the number of parameters, and running time.

2 Dataset and Methodology

2.1 RPLHR-CT Dataset

Dataset Description. The RPLHR-CT dataset is composed of 250 paired
chest CTs from patients. All data have been anonymized to ensure privacy.
Philips machines were used to perform CT scans and the raw data were then
reconstructed to thin CT (1 mm) and thick CT (5mm) images. Thus, recovering
thin CT (HR volume) from thick CT (LR volume) for this dataset is a volumetric
SR task with an upsampling factor of 5 in the depth dimension. The CT scans are
saved in NIFTT (.nii) format with volume sizes of L x 512 x 512, where 512 x 512
is the size of CT slices, and L is the number of CT slices, ranging from 191 to
396 for thin CT and 39 to 80 for thick CT. The thin CT and the corresponding
thick CT have the same in-plane resolution, ranging in [0.604,0.795], and are
aligned according to spatial location.

Dataset split and Evaluation Metric. We randomly split the RPLHR-CT
dataset into 100 train, 50 validation and 100 test CT pairs. For evaluation, we
quantitatively assess the performance of all methods in terms of peak signal to
noise ratio (PSNR) and structural similarity (SSIM) [21]. Significance is tested
by one-sided Wilcoxon signed-rank test.

Dataset Analysis. To analysis the difference between the thin CT and thick
CT, we group slices in thin CT and thick CT into three categories of slice-pairs
according to their spatial relationship, as shown on the left side of Fig.1. We
use PSNR and SSIM to access the changes in the similarity of three slice-pairs
in train, validation and test CT pairs. As shown on the right side of Fig. 1, the
results indicate that the similarity of slice-pairs at the same spatial location
in thin CT and thick CT, namely Match, is the highest, while the similarity
decreases significantly as the spatial distance becomes larger.
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Fig. 1. (a) Three categories of slice-pairs according to their spatial relationship in thin
CT and thick CT. Match: same position, shown in blue; Near: 1 mm apart, shown in
red; Far: 2mm apart, show in green. (b) The degree of similarity between the three
slice-pairs on the three datasets. (Color figure online)
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Fig. 2. (a) Illustration of the proposed Transformer Volumetric Super-Resolution Net-
work architecture. (b) Details of TAB. The purple dashed box represents two consecu-
tive swin transformer layers. The batch dimension is indicated in parentheses. (Color
figure online)
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2.2 Network Architecture

Inspired by MAE [7], we treat volumetric SR as a task to recover the masked
regions from the visible regions, where the visible regions refer to the slices in the
LR volume and the masked regions refer to the slices in the corresponding HR
volume. As illustrated in Fig. 2, we also design our TVSRN with an asymmetric
encoder-decoder architecture, but with several targeted modifications. First, in
TVSRN, the encoder and the decoder are equally important, and to better model
the relationship between the visible regions and the masked regions, the decoder
uses a larger amount of parameters than the encoder. Second, instead of the
standard transformer layer [5], we use the swin transformer layer (STL) [14],
which is less computationally intensive and more suitable for high resolution
image, as the basic component of TVSRN. Third, we propose Through-plane
Attention Blocks to exploit the spatial positional relationship of volumetric data
to achieve better performance.

Encoder is used to map the LR volume to a latent representation. The con-
secutive slices from LR volumes are denoted as the input X" € RIXPXHXW of
encoder, where D, H and W are the depth, height and width, and the channel is
1. X! is firstly fed into the Linear Embedding, whose number of feature chan-
nel is C, to extract shallow features and output Fy € REXPXHXW Then F| is
reshaped to Fy € REP*HXW Yo stack N STLs to extract deep features from
Fy as:

Fi:H'ZgTL(F’i—l)7 i:1727"'7N (1)

where HZSTL (-) denotes the i-th STL. Finally, Fy is reshaped to 3D output
X out c RCXDXHXW.

Decoder is used to recovery the HR volume from the latent representation. As
shown in Fig.2(a), mask tokens are introduced after the encoder, and the full
set of X2*" and mask tokens is input to the decoder as X" € ROX D' xHxW
where D’ is the depth of ground truth. The mask tokens are learned vector that
indicates the missing slices in the LR volumes compared to the HR counterpart.
Decoder stack M Feature Interaction Modules (FIMs), which consists of one
Through-plane Attention Block (TAB), four STLs and two reshape operations.
The reshape operations are used to reshape the input feature map into the size
expected by the next block. The output of the decoder is X$** with the same
size as X*. Note that the design of asymmetric decoder can easily be adapted
to other upsampling rates by changing the number of mask tokens.

The details of TAB are illustrated in Fig. 2(b). TAB is the first block in each
FIM. There are two parallel branches in TAB that perform self-attention on the
input from coronal and sagittal views, respectively. In both views, the depth
dimension will become an axis of the STL’s window, so the relative position
relationship between slices will be incorporated into the calculation. The param-
eter weights of the corresponding STL on the two parallel branches are shared.
Given the input feature z;, of TAB, the output is computed as:
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500 = P (), 27 = P (zin)
5" = HJTHE), 27 = HPTH (), §=1,2.3.4
Zout = 2in + PRE9(2577) + PR (25°7) (2)

where P®%(.) and P°7"(-) are permutation operations that transform the
input to sagittal and coronal view, respectively. P3%9(-) and P%"(-) denote re-
permutation operations that reshape the input back to original size. In addition,
TAB contains residual connection, which allow the aggregation of different levels
of features.

Reconstruction Target. The X3*! is fed into the Linear Projection to obtain
the pixel-wise prediction Y € RP"*H*W The L, pixel loss is formulated as:

1 -
Lpizer = D xHXW Z |Yk,i,j - Yk:,i,j| (3)

k,i,j
where Y is the ground truth HR volume.

Architecture Hyper-parameters. For each STL, the patch size is 1 x 1 and
the window sizes of x-axis, y-axis and z-axis are set to 8, 8 and 4. For Linear
Embedding, the channel number C' is 8. The number of STLs in encoder and
FIMs in decoder is set to N = 4 and M = 1, respectively.

3 Experiments and Results

Implementation Details. We normalize the intensity of the CT images from
[—1024,2048] to [0,1]. During training, 4 x 256 x 256 cubes from thick CTs are
used as input and the corresponding 16 x 256 x 256 cubes from thin CTs are
used as ground truth, in where 16 = (4 — 1) x 5 4 1. During inference, we feed
cubes from thick CTs to the model in a sliding window manner, in which the
overlap of depth dimension is 1 and the rest is 0. If the depth of untested cubes
is less than 4, we feed the last 4 slices into the model. For multiple predictions on
the same coordinate, we take the average as the final value. TVSRN is trained
with Adam optimizer. The learning rate is 0.0001 and the batch size is 1. For the
comparison methods, we follow descriptions provided in the original papers to re-
implement the models, as none have public code available. Settings not detailed
in the original paper will remain consistent with our work. Data augmentation
include random cropping and horizontal flipping. The framework is implemented
in PyTorch, and trained on NVIDIA A6000 GPUs.

3.1 Results and Analysis

Figure 3(a) summarizes the quantitative comparisons of our method and other
state-of-the-art CT volumetric SR methods: ResVox [6], MPU-Net [13], SAINT
[17] and DA-VSR [18]. For ResVox, the noise reduction part is removed. For
MPU-Net, we do not use the multi-stream architecture due to the lack of
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Fig. 3. (a) Quantitative comparisons of our TVSRN and other state-of-the-art methods.
* indicates p < 0.001. (b) PSNR vs. processing time of each volume with number of
parameters shown in circle size. (¢) quantitative results of pseudo images experiment.

available lung masks. TVSRN achieves PSNR of 38.609 £ 1.721 and SSIM of
0.936 & 0.024, outperforms others significantly (p < 0.001). Moreover, as shown
in Fig.3(b), compared to other methods, TVSRN achieves a better trade-off in
terms of the PSNR (optimal), the number of parameters (optimal), and the run-
ning time (suboptimal). We also perform the comparison on an external test set,
where TVSRN also achieved the best performance. Detailed numerical results
on the internal test set and external test set are presented in the supplementary
material. In addition, a sample-by-sample performance scatterplot is given in
the supplementary material.

We visualize the axial, coronal and sagittal views of HR CT volume obtained
by different methods. It is clear in Fig. 4 that TVSRN has the richest details and
the least amount of structural artifacts remaining in different views.
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Fig. 4. Visual comparisons of different methods against TVSRN. The first and second
rows show the axial view and coronal view respectively, displayed as lung window. The
third row is sagittal view, displayed as bone window. Yellow arrows point to areas of
marked difference. (Color figure online)

3.2 Domain Gap Analysis

We conduct a pseudo images experiment to illustrate the effect of the domain
gap. Specifically, we degrade the training data to obtain pseudo-LR volumes,
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and use these data to train several different methods. All settings are the same
as those in the previous section, except for the training data. For testing, real-
LR volumes in the internal test set are used as input to calculate the PSNR
and SSIM. As shown in Fig.3(c), the results show that both PSNR and SSIM
of various methods are significantly decreased to varying degrees (p < 0.001).
Please refer to the supplemental material for more details of degradation.

3.3 Ablation Study

The ablation study is used to verify the contribution of each component in
TVSRN on performance. The full TVSRN is compared to:

— TVSRNEncoder A standard transformer-based method based on [5]. We map
each patch of size 1 x 16 x 16 to token with length of 512 and set the number
of transformer layers to eight. Instead of asymmetric decoder, it uses subpixel
conversion [19] to perform upsampling.

— TVSRNEneoder Only the encoder of TVSRN was used. N is increasd to eight
and C' is increased to 32. The upsampling method is subpixel convert.

— TVSRNw/eTAB TAB is not used in TVSRN, that is, the relative position
relationship among slices is ignored in the network.

Table 1. Results of ablation study for TVSRN in terms of PSNR and SSIM. The best
results are bolded, and the second best results are underlined. * denotes statistically
significant (p < 0.001) against above method with one-sided Wilcoxon signed-rank test.

Designs Param |PSNR(T) SSIM(T)
TVSRN{Zeder 117.15M | 35.537 £ 1.353 | 0.918 £ 0.026
TVSRNPFneoder |1 58M | 38.364 & 1.675* | 0.934 + 0.024*
TVSRNW/°TAB | | 56M | 38.497 +1.700* | 0.935 + 0.024*
TVSRN 1.73M | 38.609 &+ 1.721* | 0.936 + 0.024*

Model performance is summarized in Table 1. Notable observations include:
1) among all designs, TVSRNE™Coder hag the most parameters but the worst
performance, which indicates that it is not feasible to simply apply the trans-
former to the volumetric SR; 2) replacing standard transformer layer with STL
can greatly reduce the number of parameters and improve the performance by a
large margin (up to 2.827 dB); 3) asymmetric decoder can improve performance
slightly without changing the number of parameters; 4) improvements can be
seen from TVSRN®/©TAB o TVSRN, indicating the effectiveness of modeling
the relative position relationship among slices. A sample-by-sample performance
scatterplots in supplemental material is used to further illustrate the effective-
ness of individual components.
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4 Conclusion

A persistent problem with volumetric SR is the lack of real-paired data for
training and evaluation, which makes it challenging generalize algorithms to
real-world datasets for practical applications. In this paper, we presented the
RPLHR-CT Dataset, which is the first open real-paired dataset for volumet-
ric SR, and provided baseline results by re-implementing four state-of-the-art
SR methods. We also proposed a convolution-free transformer-based network,
which significantly outperformed existing CNN-based methods and has the least
number of parameters and the second shortest running time. In the future, we
will enlarge the RPLHR-CT Dataset and investigate new volumetric SR training
strategies, such as semi-supervised learning or using unpaired real data.
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