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Abstract. The Coronavirus Disease 2019 (COVID-19) pandemic has
swept the whole world since 2019. Chest computed tomography (CT)
plays an important role in clinical diagnosis, management and progres-
sion monitoring of COVID-19 patients. In order to decrease the cost
of manual segmentation, weakly supervised segmentation methods, such
as class activation maps (CAM) based methods, have been applied to
achieve COVID-19-related lesion segmentation. Such methods could be
used to localize the lesion preliminarily, but it is not precise enough to
segment the lesion. In this paper, we propose a double weakly super-
vised segmentation method to achieve the segmentation of COVID-19
lesions on CT scans. A self-supervised equivalent attention mechanism
with neighborhood affinity module is proposed for accurate segmenta-
tion. Multi-instance learning is adopted for training using annotations
weaker than image-level. A simple pre-training process is also proved to
be effective. We achieve a higher average Dice compared to Unet (0.782 vs
0.601) on COVID-19 lesion segmentation tasks. Codes in this paper will
be available at https://github.com/TangWen920812/M-SEAM-NAM.

Keywords: Weakly supervised segmentation · Multi-instance
learning · COVID-19

1 Introduction

Coronavirus Disease 2019 (COVID-19) has been announced as a global pandemic
by the World Health Organization (WHO) [20]. By December 21th, over 75
million confirmed cases and 1 million deaths are reported across the globe [19].
Early detection, timely isolation and treatment of patients are advocated by
WHO in order to control the disease transmission. Chest computed tomography
(CT) plays an important role in the identification of suspected patients and
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could provides quantitative evaluation of disease progression. It is listed in the
diagnosis and treatment guidelines of the diagnosis and treatment of COVID-
19 issued by many countries, such as China [14], Japan [8], and the United of
Kingdom [3].

Deep learning methods are widely used to process medical image to assist the
detection and segmentation of COVID-19. Several studies [11,17,23]have proven
the effectiveness of Convolution Neural Network(CNN) to differentiate CT con-
taining COVID-19 lesions or not. These models could help with timely patient
triage but not quantitative analysis. COVID-19 related lesion segmentation could
assist the localization of radiological abnormalities, and is the basis for further
quantitative analysis of lesion area. Some Unet-based [16] methods [2,7,9,15]
are applied to assist lesion segmentation for quantitative analysis. However,
big amount of manual annotations are required for model training, which are
time- and energy- consuming. Some studies adopt weakly supervised methods
for COVID-19 lesion segmentation. Issam et al. [10] propose a weakly supervised
method using detection or key point annotation to decrease the labeling cost.
Yet the label used for weakly supervised segmentation is still not as simple as
classification label. Hu et al. [6] use image-level labels and class activation maps
(CAM) [24] to perform COVID-19 lesion segmentation. However, ignorance of
multiple scales and details in CAM makes this method not robust enough among
variable lesion sizes. Wang et al. [18] propose a new method focusing on variable
sizes of targets, and achieve state-of-the-art performance with only image-level
annotation on PASCAL VOC 2012 [5]. But there is no evidence shows [18] could
work on COVID-19 dataset. Comparing to nature image dataset, COVID-19
data-set needs a larger number of more professional annotations. Multi-instance
learning [13], a training method wherein a bag of images share one label, is a
good solution requiring weaker annotations. It is usually used on huge image
input which could not be put into model directly because of memory limitation.
Thus, in this method, huge images are cut into several small image bags that
share one label [1,22].

In this paper, we develop an end-to-end model, Multi-instance Self-
supervised Equivalent Attention Mechanism with Neighborhood Affinity Mod-
ule (M-SEAM-NAM), for doubly weakly supervised segmentation on COVID-
19 dataset. We propose a new neighborhood affinity module on self-supervised
equivalent attention mechanism to achieve better performance on lesions with
variable sizes. We also adopt multi-instance learning in our model to use anno-
tations weaker than image-level. Such designs allow us to train the model with
doubly weakly classification labels while achieving better performance than fully
supervised methods.

2 Method

We will introduce our method from the following three parts: the baseline
method (Sect. 2.1), the improvement of our neighborhood affinity to the base-
line (Sect. 2.2) and the combination of multi-instance learning with our proposed
model (Sect. 2.3).
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2.1 Self-supervised Equivalent Attention Mechanism (SEAM)

There is evidence [12] shows that different scales of an image would produce very
different class activation maps, and thus offer different contextual information.
This property has been leveraged in multi-scale CAM [12] to perform weakly
supervised segmentation. However, it requires batch of network structures and
complicated post-processing. Such issues are recently solved by self-supervised
equivalent attention mechanism(SEAM) [18] which we will introduce in following
paragraphs.

Fig. 1. (a) Overall structure of the proposed network. (b) Pixel Correlation Module
(PCM). (c) Neighborhood Affinity Module (NAM).

Firstly, we define our input images and corresponding classification labels as
{Ii}i=1...n and {yi}i=1...n. As shown in Fig. 1, each image Ii is sampled into two
different scales: a large scale image Iil and a small scale image Iis. Iil and Iis are
then put into the shared parameters backbone, ResNet38 [21], to gain two class
activation maps, Ci

l and Ci
s. Then a Pixel Correlation Module (PCM) is used

to produce detailed class activation maps using self-attention mechanism. Iil is
downsampled to the size of feature maps on B4 and concatenated with feature
maps on B4 and B5 in ResNet38 to form the concatenated feature maps: F i

l .
After that, as shown in Fig. 1 (b), F i

l is compressed by a 1 × 1 convolution
and flattened to calculate the non-local self-attention maps: M i

l . Beacause F i
l

combines low-level and high-level information, M i
l could give more reasonable
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details. We can get more detailed class activation maps: Di
l and Di

s by multi-
plying Ci

l and Ci
s with M i

l .
Three losses are used in SEAM. To assist the network to gain information

from different scales, the equivariant regularization loss (LER) is used between
Ci

l and Ci
s, as well as Di

l and Di
s which should be the same regardless of scale

change. To ensure the PCM could work, the equivariant cross regularization loss
(LECR) is used between Ci

l and Di
s, as well as Ci

s and Di
l . Using LECR, Di

l and
Di

s could locate the basic activation area, and would not make the PCM fall into
local minimum. In addition, we also use soft margin loss as the classification loss
(Lcls) to supervise the whole network training.

Lcls = log(1 + e−yi∗pi
l ) + log(1 + e−yi∗pi

s) (1)

LER =
1

N i
s

‖ Down(Ci
l ) − Ci

s ‖1 +
1

N i
s

‖ Down(Di
l) − Di

s ‖1 (2)

LECR =
1

N i
s

‖ Down(Ci
l ) − Di

s ‖1 +
1

N i
s

‖ Ci
s − Down(Di

l) ‖1 (3)

where pil and pis are the global average pooling result of Ci
l and Ci

s, respectively.
N i

s is the number of pixels in Ci
s. ‖ • ‖1 is the L1 distance and Down(•) is a

downsampling operation. In addition, the SEAM is pre-trained on natural images
using ImageNet [4]. We use a new pre-training method for SEAM on medical
images. We use CAM method to pre-train ResNet38 backbone in SEAM. In
detail, we remove PCM along with LER and LECR in SEAM and only train the
backbone with Lcls. The experiment in Sect. 3.3 shows the effectiveness of our
operations.

2.2 Neighborhood Affinity Module (NAM)

Although SEAM focuses on different scales of images, it is still not good enough
to solve the COVID-19 segmentation problem, as the overall changes of nat-
ural images are bigger than medical images. Such difference allows the model
trained on natural images to perceive more information than the model trained
on medical images, which only focuses on one significant feature. As shown in
Fig. 2, SEAM mainly focuses on the edge area of large lesions and produces false
positive predictions around small lesions. Based on the observation, we believe
that enhancing the relevance of features from neighborhood pixels would help to
improve the model performance. So we introduce a neighborhood affinity module
(NAM) to the basic SEAM.

Firstly, we define the position of pixels in Di
l as P = {(xj , yj)}j=1...Ji

,
and the position of pixels around (xj , yj) within a radius of r(r = 5) as
Aj = {xk, yk}k=1...Kj

. Then, the prediction result of one pixel is defined as
σ(Di

l)[x
j , yj ], where σ(•) is the sigmoid activation function. Considering the

influence caused by uncertain pixels on network optimization, two thresholds,
Tfg, and Tbg, are defined on σ(Di

l) to categorize P into three groups: back-
ground pixels Pb = {(xj , yj) | σ(Di

l)[x
j , yj ] < Tbg}j=1...Ji

= {P j
b }j=1...Ji

b
,
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foreground pixels Pf = {(xj , yj) | σ(Di
l)[x

j , yj ] > Tfg}j=1...Ji
= {P j

f }j=1...Ji
f

and other uncertain pixels which would not be used. We can also get Aj
b =

{(xk, yk) | σ(Di
l)[x

k, yk] < Tbg ∩ (xk, yk) ∈ Aj}k=1...Kj = {Aj
b(k)}k=1...Kj

b
and

Aj
f = {(xk, yk) | σ(Di

l)[x
k, yk] > Tfg ∩ (xk, yk) ∈ Aj}k=1...Kj = {Aj

f (k)}k=1...Kj
f

by the same way. After that, a concatenation (F
′i) of three different features on

B3, B4 and B5, as shown in Fig. 1, is put into NAM. Based on the definition of
Pb, Pf , Aj

b, and Aj
f , we can sample the features of each kind of pixels as F

′i[P j
b ],

F
′i[P j

f ], F
′i[Aj

b(k)], and F
′i[Aj

f (k)].
To enhance the relevance of features in neighborhood, we propose three loss,

neighborhood foreground similarity loss (LNFS) measuring similarity between
foreground and foreground, neighborhood background similarity loss (LNBS)
measuring similarity between background and background, and neighborhood
fore-back distinctive loss (LNFBD) measuring the difference between foreground
and background:

LNFS =
1
J i
f

∑
j(

1
Kj

f

∑
k(1 − cos(F

′i[P j
f ], F

′i[Aj
f (k)]))) (4)

LNBS =
1
J i
b

∑
j(

1
Kj

b

∑
k(1 − cos(F

′i[P j
b ], F

′i[Aj
b(k)]))) (5)

LNFBD =
1
J i
f

∑
j(

1
Kj

b

∑
k(cos(F

′i[P j
f ], F

′i[Aj
b(k)])))

+
1
J i
b

∑
j(

1
Kj

f

∑
k(cos(F

′i[P j
b ], F

′i[Aj
f (k)])))

(6)

where cos(•, •) is the function of cosine similarity.

2.3 Multi-instance Network with SEAM and NAM

The SEAM with NAM still requires a large amount of classification annotations.
We adopt the multi-instance training idea in our model to implement a doubly
weakly segmentation network which could use weaker classification labels to
achieve good segmentation performance. Radiologists only need to give a rough
slice range of lesion when labeling. For example, radiologists note that there are
lesions from 100 to 110 slices but do not need to record the exact slice numbers.
In this way, weaker classification labeling costs less time and we could use some
of the unknown layers in training.

The multi-instance method is usually used in pathological image. It helps to
solve the problem that a lot of images share one label. However, if the multi-
instance method could work, the positive data batch must contain at least one
positive image. In our situation, the backbone of our network is a segmentation
backbone, which means we can not use patient classification label because of
memory limitation. Thus in our experiments, we define positive batch and neg-
ative batch based on three categories of slice described in Sect. 3.1. We select
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one positive layer and other seven consecutive layers (could be unknown layers
or positive layers) as one positive data batch. We also randomly select eight con-
secutive images from negative patients as a negative batch. Because each batch
has only one label, we keep other losses all the same and change the classifica-
tion loss to Eq. 7, where y is the label of one batch, pi is the prediction of one
input image, and n is batch size. In addition, we update the network every eight
batches to avoid jumping changes on loss and also change the CAM pre-training
loss as Eq. 7.

Lcls = −log(1 + e−y∗pb) , pb = log(
1 − ∏n

i (1 − σ(pi)
∏n

i (1 − σ(pi)
) (7)

Lall = Lcls + LER + LECR + LNBS + LNFS + 0.5 ∗ LNFBD (8)

3 Experiments

3.1 Data Description

The COVID-19 CT dataset used in this study is collected from two hospitals. All
positive cases are confirmed by RT-PCR and show lesions related to COVID-19
on CT confirmed by radiologists, while all negatives cases are also confirmed by
RT-PCR and without lesions related to COVID-19 on CT. The lesions related
to COVID-19 indicate the imaging features of COVID-19 pneumonia including
multiple small patchy shadows, interstitial changes appear, multiple ground-glass
shadows, infiltrates shadows, and pulmonary consolidation. There are 587 posi-
tive cases and 288 negative cases from the first hospital. These cases are further
divided into a training set (522 positive and 240 negative cases), and a testing set
(65 positive and 48 negative cases). Cases collected from the second hospital are
used for testing only, including 68 positive and 49 negative cases. Lesions related
to COVID-19 of all positive cases in testing set (65 + 68 patients) are annotated
by two experienced radiologists on all layers, and lesions of positive cases in
training set (522 patients) are annotated every four or five layers. In all, 8309
out of 198882 CT scans layers were labeled with Lesion in the training set and
4725 + 5303 out of 24304 + 25447 CT scans layers are labeled with Lesion in
the testing set. These segmentation annotations in training set are used to train
fully supervised models. M-SEAM-NAM is trained using the positive/negative
classification labels.

The fully supervised model used in experiments is trained using CT layers
labeled with segmentation annotations and the same amount of negative layers
in negative patients. The classification labels of training set are classified into 3
categories: 1) positive layers, layers with segmentation annotations; 2) negative
layers, layers from negative patients; and 3) unknown layers, layers from pos-
itive patients without any annotation. The weakly supervised models we used
are trained using the positive/negative classification labels. Negative layers are
randomly selected to keep the sample balance.
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3.2 Overall Implementations

The proposed method is implemented using Pytorch. The losses of the network
are optimized by SGD, which is a method for stochastic optimization. The learn-
ing rate is 0.001 with linear decline and the model is trained for 16 epochs. Other
weakly supervised segmentation methods for comparison are also trained under
the same setting. The fully supervised segmentation method (Unet) is trained for
100 epochs. Common data augmentations, including shift, rotation, flip, bright-
ness changing and center cropping are utilized during training. All CT layers
are resized to 448 × 448 before inputting to the network. Additionally, we use 3
consecutive layers images as input. All the networks are trained in 2D, whereas
evaluation indexes are calculated at patient level. Dice score, lesion pixel recall
and lesion pixel precision are used to evaluate the models.

Fig. 2. Segmentation result on several weakly supervised methods. Red heatmaps are
the prediction and blue contours are the ground truth. (Color figure online)

3.3 Model Comparison

We compare our method with several weakly-supervised methods including
CAM, multi-scale CAM and SEAM(ImageNet pre-trained, baseline). To show
the effectiveness of our proposed pre-training method, we use two different pre-
trained parameters on SEAM. We also compare our model with Unet, a common
fully supervised segmentation method. The dataset is split to show more detailed
performance of each method, as positive cases could be used to show the model’s
segmentation performance and sensitivity, while negative cases could reflect the
model’s specificity. As shown in Table 1, SEAM pre-trained with CAM per-
forms significantly better than SEAM pre-trained with ImageNet. Our SEAM
with NAM model achieves a better result than the SEAM without NAM. It
proves NAM is helpful on the segmentation of COVID-19. Our M-SEAM-NAM
model outperforms all other models regarding positive, negative and all patients.
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Because a big amount of unknown layers are included in the training process
and this operation could increase the model’s understanding of unlabeled layers,
even with a weaker annotation, we still obtain the best result using the proposed
model. As shown in Fig. 2, our pre-training process, NAM and multi-instance
learning are all helpful for increasing true positive and decreasing false positive
in lesions with variable sizes.

Table 1. Segmentation model comparison on COVID-19 testing dataset. In negative
patients, if no lesions are segmented, the dice coefficient would be 1; otherwise, 0.
Wilcoxon signed rank test is used to perform statistical tests. Tfg = 0.1, r = 5 is used
on all method with NAM.

Positive patients Negative patients All patients

Method Pre-trained Dice Recall Precision Dice Dice

Unet - 0.600 ± 0.273 0.683 ± 0.280 0.574 ± 0.260 0.604 ± 0.489 0.601 ± 0.344 (p < 0.001)

CAM - 0.109 ± 0.084 0.974± 0.04 0.060 ± 0.049 0.958 ± 0.200 0.336 ± 0.396 (p < 0.001)

Multi-CAM - 0.509 ± 0.182 0.673 ± 0.103 0.470 ± 0.190 0.938 ± 0.242 0.637 ± 0.277 (p < 0.001)

SEAM
(baseline)

ImageNet 0.495 ± 0.190 0.836 ± 0.127 0.383 ± 0.187 0.958 ± 0.200 0.619 ± 0.281 (p < 0.001)

SEAM CAM 0.631 ± 0.139 0.834 ± 0.151 0.534 ± 0.160 0.958 ± 0.200 0.718 ± 0.214 (p < 0.001)

SEAM with
NAM

CAM 0.683 ± 0.135 0.763 ± 0.121 0.634 ± 0.160 0.958 ± 0.200 0.757 ± 0.197 (p < 0.001)

multi-instance
SEAM with
NAM

CAM 0.710± 0.114 0.712 ± 0.124 0.714± 0.117 0.979± 0.143 0.782± 0.171

3.4 Ablation Experiment

As there are two thresholds in the neighborhood affinity module, we use ablation
experiment to study their effect. Firstly, we analyse the statistical distribution
of SEAM model output, i.e. the pixel probability value. Based on the statistical
distribution (left histogram in Fig. 3), we set Tbg as 0.01 because it is confident
that a pixel with prediction probability smaller than Tbg = 0.01 is background
pixel. So that we only have to do ablation experiment on Tfg. As shown in the
line chart in the right of Fig. 3, we set Tfg from 0.1 to 0.8. The reason we do not
use 0.9 as one threshold is that when Tfg = 0.9, there is no foreground pixels
at the beginning of the training process. According to the results, we choose to
use Tfg = 0.1. Another hyperparameter is the neighborhood radius. As shown in
Fig. 3, 5 is the best radius. According to the results, the values of two thresholds
and radius have slight influence on model performance.



270 W. Tang et al.

Fig. 3. Ablation experiment result

4 Conclusion

We introduce a SEAM method for COVID-19 weakly supervised segmentation
and propose to use CAM model as a pre-trained model which performs better
than models pre-trained with ImageNet. We also propose a NAM method to
solve the problem that SEAM model performs unsatisfactorily on segmentation
of lesion with variable sizes in COVID-19 datasets. The SEAM-CAM method we
proposed performs best among all models. Considering the time and labor cost
of annotation, we also conduct a simple labeling strategy that radiologists just
label the approximate slice range of lesions other than the exact class of every
single slice. By using this weaker classification labeled data, we train a dou-
bly weakly supervised segmentation model, M-SEAM-CAM, via multi-instance
learning. Our proposed method achieves an better performance because of the
effective use of unlabeled data. In future study, we will try to compress our model
and use patient-level classification annotation to have a much weaker supervised
model.
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